现有信源定位方法大多假定信源是远场源或近场源,而实际定位系统中往往存在远场源和近场源共存的情况.为实现远、近场源分离及高精度信源定位,本文在稀疏信号重构理论框架下提出了一种新的远近场混合源定位算法.该算法利用阵列协方差矩...现有信源定位方法大多假定信源是远场源或近场源,而实际定位系统中往往存在远场源和近场源共存的情况.为实现远、近场源分离及高精度信源定位,本文在稀疏信号重构理论框架下提出了一种新的远近场混合源定位算法.该算法利用阵列协方差矩阵反对角线元素和重加权l_1范数惩罚获得所有信源的到达角(Direction Of Arrival,DOA)估计.在DOA估计的基础上,根据远场与近场源距离参数位于不同区间的特点利用一维搜索实现远、近场源分离以及近场源距离参数的估计.从理论角度分析了重加权l_1范数惩罚算法的重构性能.本文所提算法不仅同时适用于高斯和非高斯信号,而且无需多维搜索和参数配对,也无需信源数的先验信息,同时还可以获得较好的定位精度.计算机仿真结果验证了所提算法的有效性.展开更多
在核工业的一些工作场所中往往同时存在β射线和γ射线,准确测量β粒子和γ粒子能谱对于相关工作人员的辐射防护十分重要。本文利用Geant4模拟了β粒子和γ粒子在叠层闪烁体探测器中的能量沉积,研究了材料和结构对叠层闪烁体探测器甄别...在核工业的一些工作场所中往往同时存在β射线和γ射线,准确测量β粒子和γ粒子能谱对于相关工作人员的辐射防护十分重要。本文利用Geant4模拟了β粒子和γ粒子在叠层闪烁体探测器中的能量沉积,研究了材料和结构对叠层闪烁体探测器甄别性能的影响。模拟结果显示,对于双层结构的闪烁体探测器,第1层和第2层选用不同材料的闪烁体对β粒子的甄别影响不大,主要影响对γ粒子的甄别。γ粒子的误甄别率和识别率分别随第1层和第2层材料原子序数的增加而增加。3层结构闪烁体探测器对于γ粒子的误甄别率明显低于双层结构,并且γ粒子的误甄别率随第1层闪烁体厚度的增加而增加。经过对模拟结果分析,采用0.2 mm BC-444+17.8 mm BC-444+25 mm BaF_(2)的3层闪烁体结构甄别性能较好,对β粒子和γ粒子的平均识别率和误甄别率分别为96.7%、41.1%和<0.001%、0.16%。展开更多
将Holland风场与ERA5风场相结合,通过引入一个随风速半径变化的权重系数,构建了混合风场,进而利用MIKE21 SW建立了浙江海域台风浪模型。使用Holland风场、ERA5风场、混合风场作为输入风场模拟1918号台风“米娜”期间的风速和有效波高,...将Holland风场与ERA5风场相结合,通过引入一个随风速半径变化的权重系数,构建了混合风场,进而利用MIKE21 SW建立了浙江海域台风浪模型。使用Holland风场、ERA5风场、混合风场作为输入风场模拟1918号台风“米娜”期间的风速和有效波高,验证结果说明Holland风场和ERA5风场均无法准确反映真实风场和有效波高,而本文构建的混合风场弥补了两种风场的不足。为验证混合风场在浙江海域是否具有普适性,选取近5年影响浙江海域最为严重的5个典型台风进行台风浪数值模拟实验,并开展误差统计分析。结果表明:Holland风场在台风中心周围的风速模拟表现较好,最大风速的平均相对误差为8.62%~10.19%,但10 m s以下风速的平均相对误差较大,为29.76%~44.29%;ERA5风场在台风中心周围的风速偏小,最大风速的平均相对误差为17.64%~25.77%,但10 m s以下风速的平均相对误差比Holland风场小,为19.64%~32.00%。对5个台风的模拟中,由Holland风场、ERA5风场和混合风场驱动得到的台风浪有效波高平均相对误差的平均值分别为29.92%、25.62%和22.82%,均方根误差的平均值分别为0.46 m、0.42 m和0.39 m,一致性指数分别为0.94、0.95和0.96。上述结果说明本文构建的混合风场在浙江海域具有普适性,能够提高台风浪的模拟准确度。展开更多
文摘现有信源定位方法大多假定信源是远场源或近场源,而实际定位系统中往往存在远场源和近场源共存的情况.为实现远、近场源分离及高精度信源定位,本文在稀疏信号重构理论框架下提出了一种新的远近场混合源定位算法.该算法利用阵列协方差矩阵反对角线元素和重加权l_1范数惩罚获得所有信源的到达角(Direction Of Arrival,DOA)估计.在DOA估计的基础上,根据远场与近场源距离参数位于不同区间的特点利用一维搜索实现远、近场源分离以及近场源距离参数的估计.从理论角度分析了重加权l_1范数惩罚算法的重构性能.本文所提算法不仅同时适用于高斯和非高斯信号,而且无需多维搜索和参数配对,也无需信源数的先验信息,同时还可以获得较好的定位精度.计算机仿真结果验证了所提算法的有效性.
文摘在核工业的一些工作场所中往往同时存在β射线和γ射线,准确测量β粒子和γ粒子能谱对于相关工作人员的辐射防护十分重要。本文利用Geant4模拟了β粒子和γ粒子在叠层闪烁体探测器中的能量沉积,研究了材料和结构对叠层闪烁体探测器甄别性能的影响。模拟结果显示,对于双层结构的闪烁体探测器,第1层和第2层选用不同材料的闪烁体对β粒子的甄别影响不大,主要影响对γ粒子的甄别。γ粒子的误甄别率和识别率分别随第1层和第2层材料原子序数的增加而增加。3层结构闪烁体探测器对于γ粒子的误甄别率明显低于双层结构,并且γ粒子的误甄别率随第1层闪烁体厚度的增加而增加。经过对模拟结果分析,采用0.2 mm BC-444+17.8 mm BC-444+25 mm BaF_(2)的3层闪烁体结构甄别性能较好,对β粒子和γ粒子的平均识别率和误甄别率分别为96.7%、41.1%和<0.001%、0.16%。
文摘将Holland风场与ERA5风场相结合,通过引入一个随风速半径变化的权重系数,构建了混合风场,进而利用MIKE21 SW建立了浙江海域台风浪模型。使用Holland风场、ERA5风场、混合风场作为输入风场模拟1918号台风“米娜”期间的风速和有效波高,验证结果说明Holland风场和ERA5风场均无法准确反映真实风场和有效波高,而本文构建的混合风场弥补了两种风场的不足。为验证混合风场在浙江海域是否具有普适性,选取近5年影响浙江海域最为严重的5个典型台风进行台风浪数值模拟实验,并开展误差统计分析。结果表明:Holland风场在台风中心周围的风速模拟表现较好,最大风速的平均相对误差为8.62%~10.19%,但10 m s以下风速的平均相对误差较大,为29.76%~44.29%;ERA5风场在台风中心周围的风速偏小,最大风速的平均相对误差为17.64%~25.77%,但10 m s以下风速的平均相对误差比Holland风场小,为19.64%~32.00%。对5个台风的模拟中,由Holland风场、ERA5风场和混合风场驱动得到的台风浪有效波高平均相对误差的平均值分别为29.92%、25.62%和22.82%,均方根误差的平均值分别为0.46 m、0.42 m和0.39 m,一致性指数分别为0.94、0.95和0.96。上述结果说明本文构建的混合风场在浙江海域具有普适性,能够提高台风浪的模拟准确度。