The electric field integral equation (EFIE) combined with the multilevel fast multipole algorithm (MLFMA) is applied to analyze the radiation and impedance properties of wire antennas mounted on complex conducting pla...The electric field integral equation (EFIE) combined with the multilevel fast multipole algorithm (MLFMA) is applied to analyze the radiation and impedance properties of wire antennas mounted on complex conducting platforms to realize fast, accurate solutions. Wire, surface and junction basis functions are used to model the current distribution on the object. Application of MLFMA reduces memory requirement and computing time compared to conventional methods, such as method of moment (MOM), especially for the antenna on a large-sized platform. Generalized minimal residual (GMRES) solver with incomplete LU factorization preconditioner using a dual dropping strategy (ILUT) is applied to reduce the iterative number. Several typical numerical examples are presented to validate this algorithm and show the accuracy and computational efficiency.展开更多
Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the a...Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the above gravitational field is studied and the rotation angle of polarization plane of electromagnetic wave is derived. The result is discussed and estimated under the condition of present experiment facility.展开更多
Effects of heat and mass transfer in the flow of Burgers fluid over an inclined sheet are discussed. Problems formulation and relevant analysis are given in the presence of thermal radiation and non-uniform heat sourc...Effects of heat and mass transfer in the flow of Burgers fluid over an inclined sheet are discussed. Problems formulation and relevant analysis are given in the presence of thermal radiation and non-uniform heat source/sink. Thermal conductivity is taken temperature dependent. The nonlinear partial differential equations are simplified using boundary layer approximations. The resultant nonlinear ordinary differential equations are solved for the series solutions. The convergence of series solutions is obtained by plotting theη-curves for the velocity, temperature and concentration fields. Results of this work describe the role of different physical parameters involved in the problem. The Deborah numbers corresponding to relaxation time(β1 and β2) and angle of inclination(α) decrease the fluid velocity and concentration field. Concentration field decays as Deborah numbers corresponding to retardation time(β3) and mixed convection parameter(G) increase. Large values of heat generation/absorption parameters A/B, and the temperature distribution across the boundary layer increase. Numerical values of local Nusselt number,-θ′(0), and local Sherwood number,-f′(0), are computed and analyzed. It is found that θ′(0) increases with an increase in β3.展开更多
In this paper we develop a variational theory to study the dynamic properties of ultracold Bose gas ina funnel external potential.We obtain one-dimensional nonlinear equation which describes the dynamics of transverse...In this paper we develop a variational theory to study the dynamic properties of ultracold Bose gas ina funnel external potential.We obtain one-dimensional nonlinear equation which describes the dynamics of transversetight confined bosonic gas from three-dimension to one-dimension,and find one-dimensional s-wave scattering lengthwhich depends on the shape of transverse confining potential.If the funnel trapping potential is strong enough at zerotemperature,all transverse excitations are frozen.We find the dynamic equation which describes the Tonks-Girardeaugas and present a qualitative analysis of the experimental accessibility of the Tonks-Girardeau gas with funnel-trappedalkalic atoms.展开更多
Propagation of a high frequency electromagnetic wave in under-dence plasma in presence of an external magnetic field is investigated. When a constant magnetic field perpendicular to the motion of electrons is applied,...Propagation of a high frequency electromagnetic wave in under-dence plasma in presence of an external magnetic field is investigated. When a constant magnetic field perpendicular to the motion of electrons is applied, then the electrons rotate around the magnetic field lines and generate electromagnetic part in the wake with a nonzero group velocity. Using of the Maxwell equations and nonlinear differential equation for the electric field a direct one dimensional (ID) procedure for calculating wake equations are developed and the electric and magnetic field profile in the plasma are investigated.展开更多
This paper is concerned with the finite time blow-up phenomena for the vector nonlinear Schrdinger equations with a magnetic field which describe the spontaneous generation of a magnetic field in a cold plasma in the ...This paper is concerned with the finite time blow-up phenomena for the vector nonlinear Schrdinger equations with a magnetic field which describe the spontaneous generation of a magnetic field in a cold plasma in the subsonic limit. After obtaining some a priori estimates,we prove under certain natural conditions that the solutions to the Cauchy problem of the vector nonlinear Schrdinger equations in two and three spatial dimensions blow up in a finite time. Assuming that a solution to the aforementioned vector nonlinear Schrdinger equations is radially symmetric with respect to spatial variables x,we show that if the initial energy is non-positive,then the solution blows up in three dimensions in a finite time.展开更多
Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic ...Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic boundary conditions and the method of separation of variables,the magnetic potential of the air-gap magnetic field is obtained.Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures,and introducing the electromagnetic constitutive relations and boundary conditions,the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established.Considering geometric nonlinearity,expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given,respectively.The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle,which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction.Through numerical examples,primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained.The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases,and the amplitude’s multi-valued region will change due to the varieties of magnetic potential,air-gap and velocity.The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields.展开更多
This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coord...This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coordinates.The highly nonlinear equations are simplified with the help of non-dimensional variables under the assumption of mild stenosis.The solution of reduced nonlinear equation subject to boundary condition of porous walls having the effects of Darcy's number and slip parameter are computed analytically with the help of perturbation method.Effects of emerging parameters such as impedance A,slip parameter a,stenosis height 6,magnetic parameter and stress component Srz on velocity are illustrated graphically.The streamlines have also been presented to discuss the trapping bolus discipline.展开更多
Mean field theory has raised a lot of interest in the recent years (see in particular the results of Lasry-Lions in 2006 and 2007,of Gueant-Lasry-Lions in 2011,of HuangCaines-Malham in 2007 and many others).There are ...Mean field theory has raised a lot of interest in the recent years (see in particular the results of Lasry-Lions in 2006 and 2007,of Gueant-Lasry-Lions in 2011,of HuangCaines-Malham in 2007 and many others).There are a lot of applications.In general,the applications concern approximating an infinite number of players with common behavior by a representative agent.This agent has to solve a control problem perturbed by a field equation,representing in some way the behavior of the average infinite number of agents.This approach does not lead easily to the problems of Nash equilibrium for a finite number of players,perturbed by field equations,unless one considers averaging within different groups,which has not been done in the literature,and seems quite challenging.In this paper,the authors approach similar problems with a different motivation which makes sense for control and also for differential games.Thus the systems of nonlinear partial differential equations with mean field terms,which have not been addressed in the literature so far,are considered here.展开更多
As a continuing investigation of an earlier work that establishes the cofiinear solutions to the three-body problem with general masses under a scalar-tensor theory, we study these solutions and prove their uniqueness...As a continuing investigation of an earlier work that establishes the cofiinear solutions to the three-body problem with general masses under a scalar-tensor theory, we study these solutions and prove their uniqueness up to the first order post-Newtonian approximation. With the help of observed bounds on the scalar field in the Solar System, we show that the seventh-order polynomial equation determining the distance ratio among the three masses has either one or three positive roots. However, in the case with three positive roots, it is found that two positive roots break down the slow-motion condition for the post-Newtonian approximation so that only one positive root is physically valid. The resulting uniqueness suggests that the locations of the three masses are very close to their Newtonian positions with post-Newtonian corrections of general relativity and the scalar field. We also prove that, in the framework of the scalar-tensor theory, the angular velocity of the collinear configuration is always less than the Newtonian one when all other parameters are fixed. These results are valid only for three-body systems where upper-bounds on the scalar field are compatible with those of the Solar System.展开更多
The magnetic damping rate was introduced in the evolution equations of r-modes,which shows that r-modes can generate strong toroidal magnetic fields in the core of accreting millisecond pulsars inducing by differentia...The magnetic damping rate was introduced in the evolution equations of r-modes,which shows that r-modes can generate strong toroidal magnetic fields in the core of accreting millisecond pulsars inducing by differential rotation.With consideration of the coupling evolution of r-modes,spin and thermal evolution,we investigated the influence of the magnetic damping on the differential rotation of nonlinear r-modes of accreting neutron stars.We derived the coupling evolution equations of the star involving the magnetic damping rate in the framework of second-order r-mode theory.The numerical results show that the magnetic damping suppressed the nonlinear evolution of r-modes since the saturation amplitude is reduced to a great extent.In particular,because of the presence of the generated toroidal magnetic field,the spin-down of the stars is terminated and the viscous heating effects are also weakened.Moreover,we could obtain a stronger generated toroidal magnetic field in the second-order r-mode theory.The gravitational radiation may be detected by the advanced laser interferometer detector LIGO if the amount of differential rotation is small when the r-mode instability becomes active and the accretion rate is not very high.展开更多
基金This project was supported by the National Natural Science Foundation of China (60431010).
文摘The electric field integral equation (EFIE) combined with the multilevel fast multipole algorithm (MLFMA) is applied to analyze the radiation and impedance properties of wire antennas mounted on complex conducting platforms to realize fast, accurate solutions. Wire, surface and junction basis functions are used to model the current distribution on the object. Application of MLFMA reduces memory requirement and computing time compared to conventional methods, such as method of moment (MOM), especially for the antenna on a large-sized platform. Generalized minimal residual (GMRES) solver with incomplete LU factorization preconditioner using a dual dropping strategy (ILUT) is applied to reduce the iterative number. Several typical numerical examples are presented to validate this algorithm and show the accuracy and computational efficiency.
文摘Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the above gravitational field is studied and the rotation angle of polarization plane of electromagnetic wave is derived. The result is discussed and estimated under the condition of present experiment facility.
文摘Effects of heat and mass transfer in the flow of Burgers fluid over an inclined sheet are discussed. Problems formulation and relevant analysis are given in the presence of thermal radiation and non-uniform heat source/sink. Thermal conductivity is taken temperature dependent. The nonlinear partial differential equations are simplified using boundary layer approximations. The resultant nonlinear ordinary differential equations are solved for the series solutions. The convergence of series solutions is obtained by plotting theη-curves for the velocity, temperature and concentration fields. Results of this work describe the role of different physical parameters involved in the problem. The Deborah numbers corresponding to relaxation time(β1 and β2) and angle of inclination(α) decrease the fluid velocity and concentration field. Concentration field decays as Deborah numbers corresponding to retardation time(β3) and mixed convection parameter(G) increase. Large values of heat generation/absorption parameters A/B, and the temperature distribution across the boundary layer increase. Numerical values of local Nusselt number,-θ′(0), and local Sherwood number,-f′(0), are computed and analyzed. It is found that θ′(0) increases with an increase in β3.
基金Supported by National Natural Science Foundation of China under Grant No.10647144Natural Science Foundation under Grant GK0513102Doctoral Special Fund of Yangzhou University
文摘In this paper we develop a variational theory to study the dynamic properties of ultracold Bose gas ina funnel external potential.We obtain one-dimensional nonlinear equation which describes the dynamics of transversetight confined bosonic gas from three-dimension to one-dimension,and find one-dimensional s-wave scattering lengthwhich depends on the shape of transverse confining potential.If the funnel trapping potential is strong enough at zerotemperature,all transverse excitations are frozen.We find the dynamic equation which describes the Tonks-Girardeaugas and present a qualitative analysis of the experimental accessibility of the Tonks-Girardeau gas with funnel-trappedalkalic atoms.
文摘Propagation of a high frequency electromagnetic wave in under-dence plasma in presence of an external magnetic field is investigated. When a constant magnetic field perpendicular to the motion of electrons is applied, then the electrons rotate around the magnetic field lines and generate electromagnetic part in the wake with a nonzero group velocity. Using of the Maxwell equations and nonlinear differential equation for the electric field a direct one dimensional (ID) procedure for calculating wake equations are developed and the electric and magnetic field profile in the plasma are investigated.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171241, 10801102, 11071177)
文摘This paper is concerned with the finite time blow-up phenomena for the vector nonlinear Schrdinger equations with a magnetic field which describe the spontaneous generation of a magnetic field in a cold plasma in the subsonic limit. After obtaining some a priori estimates,we prove under certain natural conditions that the solutions to the Cauchy problem of the vector nonlinear Schrdinger equations in two and three spatial dimensions blow up in a finite time. Assuming that a solution to the aforementioned vector nonlinear Schrdinger equations is radially symmetric with respect to spatial variables x,we show that if the initial energy is non-positive,then the solution blows up in three dimensions in a finite time.
基金the National Natural Science Foundation of China(Grant Nos.12172321 and 11472239)the Hebei Provincial Natural Science Foundation of China(Grant No.A2020203007).
文摘Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic boundary conditions and the method of separation of variables,the magnetic potential of the air-gap magnetic field is obtained.Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures,and introducing the electromagnetic constitutive relations and boundary conditions,the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established.Considering geometric nonlinearity,expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given,respectively.The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle,which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction.Through numerical examples,primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained.The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases,and the amplitude’s multi-valued region will change due to the varieties of magnetic potential,air-gap and velocity.The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields.
文摘This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coordinates.The highly nonlinear equations are simplified with the help of non-dimensional variables under the assumption of mild stenosis.The solution of reduced nonlinear equation subject to boundary condition of porous walls having the effects of Darcy's number and slip parameter are computed analytically with the help of perturbation method.Effects of emerging parameters such as impedance A,slip parameter a,stenosis height 6,magnetic parameter and stress component Srz on velocity are illustrated graphically.The streamlines have also been presented to discuss the trapping bolus discipline.
基金Project supported by the WCU World Class University program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology (No. R31-20007)the Research Grants Council of HKSAR (No. PolyU 5001/11P)
文摘Mean field theory has raised a lot of interest in the recent years (see in particular the results of Lasry-Lions in 2006 and 2007,of Gueant-Lasry-Lions in 2011,of HuangCaines-Malham in 2007 and many others).There are a lot of applications.In general,the applications concern approximating an infinite number of players with common behavior by a representative agent.This agent has to solve a control problem perturbed by a field equation,representing in some way the behavior of the average infinite number of agents.This approach does not lead easily to the problems of Nash equilibrium for a finite number of players,perturbed by field equations,unless one considers averaging within different groups,which has not been done in the literature,and seems quite challenging.In this paper,the authors approach similar problems with a different motivation which makes sense for control and also for differential games.Thus the systems of nonlinear partial differential equations with mean field terms,which have not been addressed in the literature so far,are considered here.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11573015 and J1210039the Innovation Training Project for Undergraduates of Nanjing University,China
文摘As a continuing investigation of an earlier work that establishes the cofiinear solutions to the three-body problem with general masses under a scalar-tensor theory, we study these solutions and prove their uniqueness up to the first order post-Newtonian approximation. With the help of observed bounds on the scalar field in the Solar System, we show that the seventh-order polynomial equation determining the distance ratio among the three masses has either one or three positive roots. However, in the case with three positive roots, it is found that two positive roots break down the slow-motion condition for the post-Newtonian approximation so that only one positive root is physically valid. The resulting uniqueness suggests that the locations of the three masses are very close to their Newtonian positions with post-Newtonian corrections of general relativity and the scalar field. We also prove that, in the framework of the scalar-tensor theory, the angular velocity of the collinear configuration is always less than the Newtonian one when all other parameters are fixed. These results are valid only for three-body systems where upper-bounds on the scalar field are compatible with those of the Solar System.
基金supported by the West Light Foundation of Chinese Academy of Sciences(Grant No.ZD201302)National Natural Science Foundation of China(Grant Nos.11373006 and11003034)the Key Laboratory of Radio Astronomy,Chinese Academy of Sciences
文摘The magnetic damping rate was introduced in the evolution equations of r-modes,which shows that r-modes can generate strong toroidal magnetic fields in the core of accreting millisecond pulsars inducing by differential rotation.With consideration of the coupling evolution of r-modes,spin and thermal evolution,we investigated the influence of the magnetic damping on the differential rotation of nonlinear r-modes of accreting neutron stars.We derived the coupling evolution equations of the star involving the magnetic damping rate in the framework of second-order r-mode theory.The numerical results show that the magnetic damping suppressed the nonlinear evolution of r-modes since the saturation amplitude is reduced to a great extent.In particular,because of the presence of the generated toroidal magnetic field,the spin-down of the stars is terminated and the viscous heating effects are also weakened.Moreover,we could obtain a stronger generated toroidal magnetic field in the second-order r-mode theory.The gravitational radiation may be detected by the advanced laser interferometer detector LIGO if the amount of differential rotation is small when the r-mode instability becomes active and the accretion rate is not very high.