There have long been arguments about the impact of urbanization on local meteorological observations. This letter reviews up-to-date studies of the urbanization-related warming in the observed land surface air tempera...There have long been arguments about the impact of urbanization on local meteorological observations. This letter reviews up-to-date studies of the urbanization-related warming in the observed land surface air temperature series in China. Many previous studies have suggested that, over the past few decades, the local warming due to urbanization could have been about 0.1 °C/10 yr, or even larger. However, based on recently developed homogenized temperature records, the estimated urban bias is smaller. Major uncertainties arise from either the data quality or the techniques used to estimate the urbanization effect. A key example is the ‘observationminus-reanalysis' method, which tends to overestimate the urban signal in this region, partly due to systematic bias in the multi-decadal variability of surface air temperature in the reanalysis data. It is expected that improved numerical modeling with high-resolution information regarding the changing land surface in the region will help to further understand and quantify the effect of urbanization in local temperature records.展开更多
The types, composition and physico-chemical conditions of primary fluid inclusions were researched. The results show that the primary fluid inclusions contain vapor and liquid phase type (Type I), daughter mineral-b...The types, composition and physico-chemical conditions of primary fluid inclusions were researched. The results show that the primary fluid inclusions contain vapor and liquid phase type (Type I), daughter mineral-bearing type (Type II) and pure liquid phase type (Type III). The compositions of vapor are mainly H20 and CO2 with a tiny amounts of CH4 and H2; the liquid phase mainly contains Mg2+, Ca2+, Na+, K+, CI- and SO]-, and w(Na+)/w(K+)〉l; the homogenization temperatures of the primary fluid inclusions can be divided into 190-250 ℃, 250-340 ℃ and 360-420 ℃, corresponding to the salinities of 4%-9%, 9%-14%, and 14%-20.43% (NaC1 equivalent mass fraction), respectively. The mineralization process can be divided into three episodes: the silicatization stage, the quartz-sulfide stage, and the carbonatization stage, and all of them are associated with the ore-forming hydrothermal fluid activity. The origin of the hydrothermal fluid is from magrnatic water mainly, and later it mixes with the groundwater and meteoric water, which lead to the decrease of temperature and salinity. The decrease of salinity, temperature and pressure are the main causes of the metallogenic elements unloading and enriching in the favorable position.展开更多
基金supported by the National Natural Science Foundation of China[grant number 41475078]Strategic Priority Research Program–Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences[grant number XDA05090105]
文摘There have long been arguments about the impact of urbanization on local meteorological observations. This letter reviews up-to-date studies of the urbanization-related warming in the observed land surface air temperature series in China. Many previous studies have suggested that, over the past few decades, the local warming due to urbanization could have been about 0.1 °C/10 yr, or even larger. However, based on recently developed homogenized temperature records, the estimated urban bias is smaller. Major uncertainties arise from either the data quality or the techniques used to estimate the urbanization effect. A key example is the ‘observationminus-reanalysis' method, which tends to overestimate the urban signal in this region, partly due to systematic bias in the multi-decadal variability of surface air temperature in the reanalysis data. It is expected that improved numerical modeling with high-resolution information regarding the changing land surface in the region will help to further understand and quantify the effect of urbanization in local temperature records.
基金Project(200911007-04) supported by the Special Funds for Scientific Research of Land and Natural Resources, ChinaProject (2007CB411405) supported by the National Basic Research Program of ChinaProject(20109901) supported by the National Crisis Office of China
文摘The types, composition and physico-chemical conditions of primary fluid inclusions were researched. The results show that the primary fluid inclusions contain vapor and liquid phase type (Type I), daughter mineral-bearing type (Type II) and pure liquid phase type (Type III). The compositions of vapor are mainly H20 and CO2 with a tiny amounts of CH4 and H2; the liquid phase mainly contains Mg2+, Ca2+, Na+, K+, CI- and SO]-, and w(Na+)/w(K+)〉l; the homogenization temperatures of the primary fluid inclusions can be divided into 190-250 ℃, 250-340 ℃ and 360-420 ℃, corresponding to the salinities of 4%-9%, 9%-14%, and 14%-20.43% (NaC1 equivalent mass fraction), respectively. The mineralization process can be divided into three episodes: the silicatization stage, the quartz-sulfide stage, and the carbonatization stage, and all of them are associated with the ore-forming hydrothermal fluid activity. The origin of the hydrothermal fluid is from magrnatic water mainly, and later it mixes with the groundwater and meteoric water, which lead to the decrease of temperature and salinity. The decrease of salinity, temperature and pressure are the main causes of the metallogenic elements unloading and enriching in the favorable position.