Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy...Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.展开更多
The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordin...The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.展开更多
In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and ...In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and local refinement. Computational formula for a 9-node NMM based on quadratic B-splines is derived. In order to exactly represent some common free-form shapes such as circles, arcs, and ellipsoids, quadratic non-uniform rational B-splines(NURBS) are introduced into NMM. The coordinate transformation based on the basis function of NURBS is established to enable exact integration for the manifold elements containing those shapes. For the case of crack propagation problems where singular fields around crack tips exist, local refinement technique by the application of T-spline discretizations is incorporated into NMM, which facilitates a truly local refinement without extending the entire row of control points. A local refinement strategy for the 4-node mathematical cover mesh based on T-splines and Lagrange interpolation polynomial is proposed. Results from numerical examples show that the 9-node NMM based on NURBS has higher accuracies. The coordinate transformation based on the NURBS basis function improves the accuracy of NMM by exact integration. The local mesh refinement using T-splines reduces the number of degrees of freedom while maintaining calculation accuracy at the same time.展开更多
文摘Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472102 and 1043203)the Foundation of Ningbo University (No. 2005014), China
文摘The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB047100)the National Natural Science Foundation of China(Grant No.41372316)
文摘In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and local refinement. Computational formula for a 9-node NMM based on quadratic B-splines is derived. In order to exactly represent some common free-form shapes such as circles, arcs, and ellipsoids, quadratic non-uniform rational B-splines(NURBS) are introduced into NMM. The coordinate transformation based on the basis function of NURBS is established to enable exact integration for the manifold elements containing those shapes. For the case of crack propagation problems where singular fields around crack tips exist, local refinement technique by the application of T-spline discretizations is incorporated into NMM, which facilitates a truly local refinement without extending the entire row of control points. A local refinement strategy for the 4-node mathematical cover mesh based on T-splines and Lagrange interpolation polynomial is proposed. Results from numerical examples show that the 9-node NMM based on NURBS has higher accuracies. The coordinate transformation based on the NURBS basis function improves the accuracy of NMM by exact integration. The local mesh refinement using T-splines reduces the number of degrees of freedom while maintaining calculation accuracy at the same time.