针对磁流体流动控制技术对大体积、均匀放电等离子体的需要,开展了低气压下平板型电容耦合放电特性实验研究,并基于均匀射频放电模型,联立能量平衡方程建立诊断模型对等离子体参数进行诊断。结果表明:气压较低时,放电为α模式,整个放电...针对磁流体流动控制技术对大体积、均匀放电等离子体的需要,开展了低气压下平板型电容耦合放电特性实验研究,并基于均匀射频放电模型,联立能量平衡方程建立诊断模型对等离子体参数进行诊断。结果表明:气压较低时,放电为α模式,整个放电空间发光较为均匀,当气压大于500 Pa时,放电转变为γ模式,在电极附近出现负辉光区,但负辉光区较厚占据了整个放电空间,随着气压增大,负辉光区、法拉第暗区厚度减小,并在放电区域中心出现明显正柱区,正柱区面积随负载功率的增大而增大;放电为γ模式时,电流将随负载功率增大而增大,而电压先不变后增大,并且转折点负载功率随着气压增大而增大;电子数密度ne随负载功率的增大线性增大,而电子温度T_e只是略有增大,约为5500 K(0.47 e V)。展开更多
文摘针对磁流体流动控制技术对大体积、均匀放电等离子体的需要,开展了低气压下平板型电容耦合放电特性实验研究,并基于均匀射频放电模型,联立能量平衡方程建立诊断模型对等离子体参数进行诊断。结果表明:气压较低时,放电为α模式,整个放电空间发光较为均匀,当气压大于500 Pa时,放电转变为γ模式,在电极附近出现负辉光区,但负辉光区较厚占据了整个放电空间,随着气压增大,负辉光区、法拉第暗区厚度减小,并在放电区域中心出现明显正柱区,正柱区面积随负载功率的增大而增大;放电为γ模式时,电流将随负载功率增大而增大,而电压先不变后增大,并且转折点负载功率随着气压增大而增大;电子数密度ne随负载功率的增大线性增大,而电子温度T_e只是略有增大,约为5500 K(0.47 e V)。