Anti-spiral waves are controlled in an oscillatory system by using a local inhomogeneity. The inhomogeneity acts as a wave source, and gives rise to the propagating plane waves, tt is found that there is a critical pa...Anti-spiral waves are controlled in an oscillatory system by using a local inhomogeneity. The inhomogeneity acts as a wave source, and gives rise to the propagating plane waves, tt is found that there is a critical pacemaking domain size below which no wave will be created at all. Two types of ordered waves (target waves and traveling waves) are created depending on the geometry of the local inhomogeneity. The competition between the anti-spiral waves and the ordered waves is discussed. Two different competition mechanisms were observed, which are related to the ordered waves obtained from different local inhomogeneities. It is found that traveling waves with either lower frequency or higher frequency can both eliminate the anti-spiral waves, while only the target waves with lower absolute value of frequency can eliminate the anti-spiral waves. This method also applies to outwardly rotating spiral waves. The control mechanism is intuitively explained and the control method is easily operative.展开更多
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.10647123).
文摘Anti-spiral waves are controlled in an oscillatory system by using a local inhomogeneity. The inhomogeneity acts as a wave source, and gives rise to the propagating plane waves, tt is found that there is a critical pacemaking domain size below which no wave will be created at all. Two types of ordered waves (target waves and traveling waves) are created depending on the geometry of the local inhomogeneity. The competition between the anti-spiral waves and the ordered waves is discussed. Two different competition mechanisms were observed, which are related to the ordered waves obtained from different local inhomogeneities. It is found that traveling waves with either lower frequency or higher frequency can both eliminate the anti-spiral waves, while only the target waves with lower absolute value of frequency can eliminate the anti-spiral waves. This method also applies to outwardly rotating spiral waves. The control mechanism is intuitively explained and the control method is easily operative.