The aim of this work is to construct a new quadrature formula for Fourier Chebyshev coef ficients based on the divided differences of the integrand at points 1, 1 and the zeros of the n th Chebyshev polynomial o...The aim of this work is to construct a new quadrature formula for Fourier Chebyshev coef ficients based on the divided differences of the integrand at points 1, 1 and the zeros of the n th Chebyshev polynomial of the second kind. The interesting thing is that this quadrature rule is closely related to the well known Gauss Turn quadrature formula and similar to a recent result of Micchelli and Sharma, extending a particular case due to Micchelli and Rivlin.展开更多
This paper extends the dimension-reduced projection four-dimensional variational assimilation method(DRP-4DVar) by adding a nonlinear correction process,thereby forming the DRP-4DVar with a nonlinear correction, which...This paper extends the dimension-reduced projection four-dimensional variational assimilation method(DRP-4DVar) by adding a nonlinear correction process,thereby forming the DRP-4DVar with a nonlinear correction, which shall hereafter be referred to as the NC-DRP-4DVar. A preliminary test is conducted using the Lorenz-96 model in one single-window experiment and several multiple-window experiments. The results of the single-window experiment show that compared with the adjoint-based traditional 4DVar, the final convergence of the cost function for the NC-DRP-4DVar is almost the same as that using the traditional 4DVar, but with much less computation. Furthermore, the 30-window assimilation experiments demonstrate that the NC-DRP-4DVar can alleviate the linearity approximation error and reduce the root mean square error significantly.展开更多
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decom...Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.展开更多
We present several new constructions of differentially 4-uniform permutations over F22 mby modifying the values of the inverse function on some subsets of F22 m. The resulted differentially 4-uniform permutations have...We present several new constructions of differentially 4-uniform permutations over F22 mby modifying the values of the inverse function on some subsets of F22 m. The resulted differentially 4-uniform permutations have high nonlinearities and algebraic degrees, which provide more choices for the design of crytographic substitution boxes.展开更多
The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are...The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized randomly weighted least absolute deviation (LAD for short) method. The resulting estimator of the unknown vector 30 is shown to be consistent and asymptotically normal. In addition, the results facilitate the construction of confidence regions and the hypothesis testing for the unknown parameters. Extensive simulations are reported, showing that the proposed method works well in practical settings. The proposed methods are also applied to a data set from the study of an AIDS clinical trial group.展开更多
Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition,...Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition, Kumarasan and Rao(1999), implementing the idea of the Szeg?o limit theorem(see below),proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal fa(e^(it)) = e^(iN0t)M∑k=0a_k^(eikt),(0.1)where a_0≠ 0, a_M≠ 0. Their method involves minimizing the energy E(f_a, h_1, h_2,..., h_H) =1/(2π)∫_0^(2π)|1+H∑k=1h_k^(eikt)|~2|fa(e^(it))|~2dt(0.2) with the undetermined complex numbers hk's by the least mean square error method. In the limiting procedure H →∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper is two-fold. On one hand, we rigorously prove that, if fa(e^(it)) is a polynomial analytic signal as given in(0.1),then for any integer H≥M, and with |fa(e^(it))|~2 in the integrand part of(0.2) being replaced with 1/|fa(e^(it))|~2,the exact solution of the minimum-phase signal of fa(e^(it)) can be extracted out. On the other hand, we show that the Fourier system e^(ikt) used in the above process may be replaced with the Takenaka-Malmquist(TM) system, r_k(e^(it)) :=((1-|α_k|~2e^(it))/(1-α_ke^(it))^(1/2)∏_(j=1)^(k-1)(e^(it)-α_j/(1-α_je^(it))^(1/2), k = 1, 2,..., r_0(e^(it)) = 1, i.e., the least mean square error method based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any functions f_a in the Hardy space. The advantage of the TM system method is that the parameters α_1,..., α_n,...determining the system can be adaptively selected in order to increase computational efficiency. In particular,adopting the n-best rational(Blaschke form) approximation selection for the n-tuple {α_1,..., α_n}, n≥N, where N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can be accurately and efficiently extracted out.展开更多
We study the quantization for in-homogeneous self-similar measures μ supported on self-similar sets.Assuming the open set condition for the corresponding iterated function system, we prove the existence of the quanti...We study the quantization for in-homogeneous self-similar measures μ supported on self-similar sets.Assuming the open set condition for the corresponding iterated function system, we prove the existence of the quantization dimension for μ of order r ∈(0, ∞) and determine its exact value ξ_r. Furthermore, we show that,the ξ_r-dimensional lower quantization coefficient for μ is always positive and the upper one can be infinite. A sufficient condition is given to ensure the finiteness of the upper quantization coefficient.展开更多
文摘The aim of this work is to construct a new quadrature formula for Fourier Chebyshev coef ficients based on the divided differences of the integrand at points 1, 1 and the zeros of the n th Chebyshev polynomial of the second kind. The interesting thing is that this quadrature rule is closely related to the well known Gauss Turn quadrature formula and similar to a recent result of Micchelli and Sharma, extending a particular case due to Micchelli and Rivlin.
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2010CB951604)the National Key Technologies Research and Development Program of China (Grant No. 2012BAC22B02)the National Natural Science Foundation of China (Grant No. 41105120)
文摘This paper extends the dimension-reduced projection four-dimensional variational assimilation method(DRP-4DVar) by adding a nonlinear correction process,thereby forming the DRP-4DVar with a nonlinear correction, which shall hereafter be referred to as the NC-DRP-4DVar. A preliminary test is conducted using the Lorenz-96 model in one single-window experiment and several multiple-window experiments. The results of the single-window experiment show that compared with the adjoint-based traditional 4DVar, the final convergence of the cost function for the NC-DRP-4DVar is almost the same as that using the traditional 4DVar, but with much less computation. Furthermore, the 30-window assimilation experiments demonstrate that the NC-DRP-4DVar can alleviate the linearity approximation error and reduce the root mean square error significantly.
基金supported by National Natural Science Foundation of China (GrantNos.10931002,10911120386)
文摘Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.
基金supported by National Basic Research Programme of China(Grant No.2013CB834203)National Natural Science Foundation of China(Grant Nos.11201214 and 61472417)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA06010702)
文摘We present several new constructions of differentially 4-uniform permutations over F22 mby modifying the values of the inverse function on some subsets of F22 m. The resulted differentially 4-uniform permutations have high nonlinearities and algebraic degrees, which provide more choices for the design of crytographic substitution boxes.
文摘The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized randomly weighted least absolute deviation (LAD for short) method. The resulting estimator of the unknown vector 30 is shown to be consistent and asymptotically normal. In addition, the results facilitate the construction of confidence regions and the hypothesis testing for the unknown parameters. Extensive simulations are reported, showing that the proposed method works well in practical settings. The proposed methods are also applied to a data set from the study of an AIDS clinical trial group.
基金supported by Cultivation Program for Oustanding Young Teachers of Guangdong Province (Grant No. Yq2014060)Macao Science Technology Fund (Grant No. FDCT/099/ 2014/A2)
文摘Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition, Kumarasan and Rao(1999), implementing the idea of the Szeg?o limit theorem(see below),proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal fa(e^(it)) = e^(iN0t)M∑k=0a_k^(eikt),(0.1)where a_0≠ 0, a_M≠ 0. Their method involves minimizing the energy E(f_a, h_1, h_2,..., h_H) =1/(2π)∫_0^(2π)|1+H∑k=1h_k^(eikt)|~2|fa(e^(it))|~2dt(0.2) with the undetermined complex numbers hk's by the least mean square error method. In the limiting procedure H →∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper is two-fold. On one hand, we rigorously prove that, if fa(e^(it)) is a polynomial analytic signal as given in(0.1),then for any integer H≥M, and with |fa(e^(it))|~2 in the integrand part of(0.2) being replaced with 1/|fa(e^(it))|~2,the exact solution of the minimum-phase signal of fa(e^(it)) can be extracted out. On the other hand, we show that the Fourier system e^(ikt) used in the above process may be replaced with the Takenaka-Malmquist(TM) system, r_k(e^(it)) :=((1-|α_k|~2e^(it))/(1-α_ke^(it))^(1/2)∏_(j=1)^(k-1)(e^(it)-α_j/(1-α_je^(it))^(1/2), k = 1, 2,..., r_0(e^(it)) = 1, i.e., the least mean square error method based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any functions f_a in the Hardy space. The advantage of the TM system method is that the parameters α_1,..., α_n,...determining the system can be adaptively selected in order to increase computational efficiency. In particular,adopting the n-best rational(Blaschke form) approximation selection for the n-tuple {α_1,..., α_n}, n≥N, where N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can be accurately and efficiently extracted out.
基金supported by China Scholarship Council(Grant No.201308320049)
文摘We study the quantization for in-homogeneous self-similar measures μ supported on self-similar sets.Assuming the open set condition for the corresponding iterated function system, we prove the existence of the quantization dimension for μ of order r ∈(0, ∞) and determine its exact value ξ_r. Furthermore, we show that,the ξ_r-dimensional lower quantization coefficient for μ is always positive and the upper one can be infinite. A sufficient condition is given to ensure the finiteness of the upper quantization coefficient.