期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
混合幂均差函数对平均不等式的隔离 被引量:1
1
作者 马统一 朱福国 《西北师范大学学报(自然科学版)》 CAS 2003年第3期25-30,共6页
引入了n个非负变元x1,x2,…,xn(n≥2)的混合幂均差函数的概念,利用严格的分析方法建立了该函数对平均不等式的一种隔离.作为其应用,导出了混合幂均差函数对算术 几何平均不等式和幂平均不等式的一种隔离和著名的Holland猜想的较为深刻... 引入了n个非负变元x1,x2,…,xn(n≥2)的混合幂均差函数的概念,利用严格的分析方法建立了该函数对平均不等式的一种隔离.作为其应用,导出了混合幂均差函数对算术 几何平均不等式和幂平均不等式的一种隔离和著名的Holland猜想的较为深刻的推广. 展开更多
关键词 幂平均 算术-几何平均 混合幂均差函数 Holland猜想 不等式 隔离
下载PDF
均差函数 φ(n)是增函数
2
作者 张宝泉 《试题与研究(教学论坛)》 2020年第33期111-111,共1页
通过例题分析,证明均差函数的递增性。
关键词 均差函数 函数
下载PDF
加权均差(商)函数单调性新证 被引量:9
3
作者 郭莉 《毕节师范高等专科学校学报》 1999年第3期20-24,共5页
本文利用加权均值不等式推广证明了加权均差函数和加权均商函数,推进完善了文[1]、[2]、[3]、[4]的内容,改进简化了有关文献的证法,证法初等和谐。
关键词 加权均差函数 加权均商函数 递增性
下载PDF
均差方函数及其在提高CCD条纹测量精度中的应用
4
作者 王双维 郝乃澜 王成 《物理实验》 1997年第3期117-119,共3页
关键词 CCD 电荷耦合器件 干涉 莫尔条纹 均差函数
下载PDF
基于并行遗传算法的图像匹配系统设计
5
作者 刘晋胜 彭志平 《电视技术》 北大核心 2009年第S2期69-70,共2页
为了能够在工程应用现场准确实现图像匹配问题,结合目前现场处理中应用较多的TMS320C6201芯片的内部并行结构特点,设计硬件并行遗传算法进行寻优。实验结果表明系统整体方案具有一定的可行性。
关键词 并行遗传算法 图像匹配 DSP 绝对平均差函数
下载PDF
服从ARCH模型的风险资产定价模型
6
作者 杨兵 李维德 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第5期1-4,共4页
考虑服从 ARCH模型的风险资产的定价问题 ,研究了投资者在具有二次效用函数下的最优投资组合问题 .利用无套利原理给出了投资者在效用最大化条件下风险资产的定价问题 ,给出了最优投资组合的定价模型 。
关键词 ARCH模型 均差效用函数 无套利原理 无风险收益率 金融学 证券
下载PDF
Quadrature formulas for Fourier-Chebyshev coefficients
7
作者 杨士俊 《Journal of Zhejiang University Science》 CSCD 2002年第3期326-331,共6页
The aim of this work is to construct a new quadrature formula for Fourier Chebyshev coef ficients based on the divided differences of the integrand at points 1, 1 and the zeros of the n th Chebyshev polynomial o... The aim of this work is to construct a new quadrature formula for Fourier Chebyshev coef ficients based on the divided differences of the integrand at points 1, 1 and the zeros of the n th Chebyshev polynomial of the second kind. The interesting thing is that this quadrature rule is closely related to the well known Gauss Turn quadrature formula and similar to a recent result of Micchelli and Sharma, extending a particular case due to Micchelli and Rivlin. 展开更多
关键词 Divided differences QUADRATURE Chebyshev polynomials Fourier Chebyshev coefficient
下载PDF
An Extension of the Dimension-Reduced Projection 4DVar
8
作者 SHEN Si LIU Juan-Juan WANG Bin 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第4期324-329,共6页
This paper extends the dimension-reduced projection four-dimensional variational assimilation method(DRP-4DVar) by adding a nonlinear correction process,thereby forming the DRP-4DVar with a nonlinear correction, which... This paper extends the dimension-reduced projection four-dimensional variational assimilation method(DRP-4DVar) by adding a nonlinear correction process,thereby forming the DRP-4DVar with a nonlinear correction, which shall hereafter be referred to as the NC-DRP-4DVar. A preliminary test is conducted using the Lorenz-96 model in one single-window experiment and several multiple-window experiments. The results of the single-window experiment show that compared with the adjoint-based traditional 4DVar, the final convergence of the cost function for the NC-DRP-4DVar is almost the same as that using the traditional 4DVar, but with much less computation. Furthermore, the 30-window assimilation experiments demonstrate that the NC-DRP-4DVar can alleviate the linearity approximation error and reduce the root mean square error significantly. 展开更多
关键词 data assimilation linear approximation nonlinear correction OSSE
下载PDF
Joint semiparametric mean-covariance model in longitudinal study 被引量:3
9
作者 MAO Jie ZHU ZhongYi 《Science China Mathematics》 SCIE 2011年第1期145-164,共20页
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decom... Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach. 展开更多
关键词 generalized estimating equation kernel estimation local linear regression modified Cholesky decomposition semiparametric varying-coefficient partially linear model
原文传递
Further results on differentially 4-uniform permutations over F2^2m 被引量:4
10
作者 ZHA ZhengBang HU Lei +1 位作者 SUN SiWei SHAN JinYong 《Science China Mathematics》 SCIE CSCD 2015年第7期1577-1588,共12页
We present several new constructions of differentially 4-uniform permutations over F22 mby modifying the values of the inverse function on some subsets of F22 m. The resulted differentially 4-uniform permutations have... We present several new constructions of differentially 4-uniform permutations over F22 mby modifying the values of the inverse function on some subsets of F22 m. The resulted differentially 4-uniform permutations have high nonlinearities and algebraic degrees, which provide more choices for the design of crytographic substitution boxes. 展开更多
关键词 PERMUTATION differentially 4-uniform function NONLINEARITY algebraic degree
原文传递
Randomly Weighted LAD-Estimation for Partially Linear Errors-in-Variables Models
11
作者 Xiaohan YANG Rong JIANG Weimin QIAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第4期561-578,共18页
The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are... The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized randomly weighted least absolute deviation (LAD for short) method. The resulting estimator of the unknown vector 30 is shown to be consistent and asymptotically normal. In addition, the results facilitate the construction of confidence regions and the hypothesis testing for the unknown parameters. Extensive simulations are reported, showing that the proposed method works well in practical settings. The proposed methods are also applied to a data set from the study of an AIDS clinical trial group. 展开更多
关键词 Partially linear errors-in-variables LAD-estimation Randomly weighted method Linear hypothesis Randomly weighted LAD-test
原文传递
Extracting outer function part from Hardy space function 被引量:3
12
作者 TAN LiHui QIAN Tao 《Science China Mathematics》 SCIE CSCD 2017年第11期2321-2336,共16页
Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition,... Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition, Kumarasan and Rao(1999), implementing the idea of the Szeg?o limit theorem(see below),proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal fa(e^(it)) = e^(iN0t)M∑k=0a_k^(eikt),(0.1)where a_0≠ 0, a_M≠ 0. Their method involves minimizing the energy E(f_a, h_1, h_2,..., h_H) =1/(2π)∫_0^(2π)|1+H∑k=1h_k^(eikt)|~2|fa(e^(it))|~2dt(0.2) with the undetermined complex numbers hk's by the least mean square error method. In the limiting procedure H →∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper is two-fold. On one hand, we rigorously prove that, if fa(e^(it)) is a polynomial analytic signal as given in(0.1),then for any integer H≥M, and with |fa(e^(it))|~2 in the integrand part of(0.2) being replaced with 1/|fa(e^(it))|~2,the exact solution of the minimum-phase signal of fa(e^(it)) can be extracted out. On the other hand, we show that the Fourier system e^(ikt) used in the above process may be replaced with the Takenaka-Malmquist(TM) system, r_k(e^(it)) :=((1-|α_k|~2e^(it))/(1-α_ke^(it))^(1/2)∏_(j=1)^(k-1)(e^(it)-α_j/(1-α_je^(it))^(1/2), k = 1, 2,..., r_0(e^(it)) = 1, i.e., the least mean square error method based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any functions f_a in the Hardy space. The advantage of the TM system method is that the parameters α_1,..., α_n,...determining the system can be adaptively selected in order to increase computational efficiency. In particular,adopting the n-best rational(Blaschke form) approximation selection for the n-tuple {α_1,..., α_n}, n≥N, where N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can be accurately and efficiently extracted out. 展开更多
关键词 complex Hardy space analytic signal Nevanlinna decomposition inner and outer functions minimum-phase signal all-phase signal Takenaka-Malmquist system
原文传递
Asymptotics of the quantization errors for in-homogeneous self-similar measures supported on self-similar sets
13
作者 ZHU SanGuo 《Science China Mathematics》 SCIE CSCD 2016年第2期337-350,共14页
We study the quantization for in-homogeneous self-similar measures μ supported on self-similar sets.Assuming the open set condition for the corresponding iterated function system, we prove the existence of the quanti... We study the quantization for in-homogeneous self-similar measures μ supported on self-similar sets.Assuming the open set condition for the corresponding iterated function system, we prove the existence of the quantization dimension for μ of order r ∈(0, ∞) and determine its exact value ξ_r. Furthermore, we show that,the ξ_r-dimensional lower quantization coefficient for μ is always positive and the upper one can be infinite. A sufficient condition is given to ensure the finiteness of the upper quantization coefficient. 展开更多
关键词 condensation system in-homogeneous self-similar measures quantization coefficient quantizationdimension
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部