Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested par...Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations, the resulting volume energy al and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV, and the density symmetry L is around 100 MeV. On the other hand, models that consider only linear terms lead to incompressibility Ko much higher than expected. For most parameter sets there exists a critical point (pc, δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r ≌ 0.9 fro.展开更多
Perfluorolyether is characterized by highly chemical inertness, oxidative stability, anticorrosion as well as radiation resistance. It can be used as lubricant especially in harsh environmental conditions. In this wor...Perfluorolyether is characterized by highly chemical inertness, oxidative stability, anticorrosion as well as radiation resistance. It can be used as lubricant especially in harsh environmental conditions. In this work, hexafluoropylene oxide was catalytically polymerized at low temperature using the methods of anionic polymerization, and perfluorolyethers were obtained with number-average degree of polymerization more than 15. CsF and RbF were used as catalysts and their catalytic activities were investigated. Experimental results show that perfluorolyethers with number-average molar masses up to 3 000 g/mol could be obtained using the two kinds of catalysts, respectively. As compared to CsF, the number-average degree of polymerization is higher and the relative molecular mass distribution interval is narrower when RbF is used as catalyst. The effect of factors such as impurities' content, reaction temperature and reaction time on the number-average degree of polymerization was also investigated. It is found that low impurities' content and low temperature are beneficial to the generation of high number-average degree of perfluorolyethers. The optimization reaction time is 24 h, and fiarther increase of reaction time does not significantly affect the average relative molecular mass. The product was characterized by IR, 19F NMR and GC-MS, and the catalytic mechanism was analyzed finally.展开更多
The influences of hyperon-hyperon interaction on the overall properties of hadronic star are investigated in the framework of relativistic mean field (RMF) theory. For certain hyperon coupling, the weaker hyperon-hy...The influences of hyperon-hyperon interaction on the overall properties of hadronic star are investigated in the framework of relativistic mean field (RMF) theory. For certain hyperon coupling, the weaker hyperon-hyperon interaction can lead to the heavier hadronic star, which accords with the observation of heavy neutron star in X-ray binaries. We find that the threshold densities of the hyperons with larger masses are brought to a lower values with the increase of the hyperon-hyperon interaction. The possibility of the existence of hyperon star is checked with the consideration of hyperon-hyperon interaction.展开更多
For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator m...For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 Since A #0,r B = A and A #l,r B = B, weregard A#t,rB as apath combining A and B.Our aim is to show the essential properties of St,r (AIB). The Tsallis relative operator entropy by Yanagi, Kuriyama and Furuichi can also be expanded, and by using this, we can give an expanded operator valued a-divergence and obtain its properties.展开更多
Shock relations usually found in literatures are derived theoretically under the assumption of homogeneous thermodynamic properties, i.e., constant ratio of specific heats, γ. However, high temperature effects post a...Shock relations usually found in literatures are derived theoretically under the assumption of homogeneous thermodynamic properties, i.e., constant ratio of specific heats, γ. However, high temperature effects post a strong shock wave may result in thermodynamic heterogeneities and failure to the original shock relations. In this paper, the shock relations are extended to take account of high-temperature effects. Comparison indicates that the present approach is more feasible than other analytical approaches to reflect the influence of γ heterogeneity on the post-shock parameters.展开更多
We present a rigorous homogenization approach for elcient computation of a class of physical problems in a one-dimensional periodic heterogeneous material. This material is represented by a spatially periodic array of...We present a rigorous homogenization approach for elcient computation of a class of physical problems in a one-dimensional periodic heterogeneous material. This material is represented by a spatially periodic array of unit cells with a length of More specifically, the method is applied to the diffusion, heat conduction, and wave propagation problems. Heterogeneous materials can have arbitrary position-dependent continuous or discontinuous materials properties (for example heat conductivity) within the unit cell. The final effective model includes both effective properties at the leading order and high-order contributions due to the microscopic heterogeneity. A dimensionless heterogeneity parameter ~ is defined to represent high-order contributions, shown to be in the range of [-1/12, 0], and has a universal expression for all three problems. Both effective properties and heterogeneity parameter 13 are independent oft, the microscopic scale of heterogeneity. The homogenized solution describing macroscopic variations can be obtained from the effective model. Solution with sub-unit-cell accuracy can be constructed based on the homogenized solution and its spatial derivatives. The paper represents a general approach to obtain the effective model for arbitrary periodic heterogeneous materials with position-dependent properties.展开更多
In this work, thermodynamical properties of a two-dimensional (21)) Lennard-Jones (L J) fluid are studied. Here, to increase the accuracy of our theoretical calculations, the correlation functions in three-partic...In this work, thermodynamical properties of a two-dimensional (21)) Lennard-Jones (L J) fluid are studied. Here, to increase the accuracy of our theoretical calculations, the correlation functions in three-particle level (triplet) are applied. To obtain the triplet correlation functions, the Attard's source particle method is extended to 21) systems. In the Attard's procedure, the inhomogeneous Ornstein Zernike (OZ) equation is solved using the Treizenberg Zwanzwig (TZ) expression and a closure relation like the hy2ernetted-chain (HNC) approximation. In the present work, we also have performed the Monte Carlo (MC) simulation. The theoretical results are in fairly agreement with the MC simulation. Also, our results show that the approach proposed here is suitable to study the 2D LJ fluid.展开更多
β-decay properties of N=18-22,Z=10-14 nuclei are analyzed with a new shell-model Hamiltonian using the Gogny densitydependent interaction.The Gogny force which has been widely and successfully used in mean-field theo...β-decay properties of N=18-22,Z=10-14 nuclei are analyzed with a new shell-model Hamiltonian using the Gogny densitydependent interaction.The Gogny force which has been widely and successfully used in mean-field theory can provide reasonable two-body matrix elements for cross-shell calculations.The log f t values andβ-decay level schemes are systematically studied using the D1S-Gogny interaction and compared with the SDPF-M results and experimental data.It is shown that the new Hamiltonian provides reliable results forβ-decay along with subtle level schemes for this region.Shell-model calculations with Gogny interaction can lead to a successful description of nuclei in and around the N=20 island of inversion and supplements experiment where sufficient data are not available.展开更多
基金The authors would like to acknowledge K.C. Chung (in memory) and C.S. Wang by their help in the beginning of this work.
文摘Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations, the resulting volume energy al and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV, and the density symmetry L is around 100 MeV. On the other hand, models that consider only linear terms lead to incompressibility Ko much higher than expected. For most parameter sets there exists a critical point (pc, δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r ≌ 0.9 fro.
基金Project(53110704012) supported by the Fundamental Research Funds for the Central Universities,China
文摘Perfluorolyether is characterized by highly chemical inertness, oxidative stability, anticorrosion as well as radiation resistance. It can be used as lubricant especially in harsh environmental conditions. In this work, hexafluoropylene oxide was catalytically polymerized at low temperature using the methods of anionic polymerization, and perfluorolyethers were obtained with number-average degree of polymerization more than 15. CsF and RbF were used as catalysts and their catalytic activities were investigated. Experimental results show that perfluorolyethers with number-average molar masses up to 3 000 g/mol could be obtained using the two kinds of catalysts, respectively. As compared to CsF, the number-average degree of polymerization is higher and the relative molecular mass distribution interval is narrower when RbF is used as catalyst. The effect of factors such as impurities' content, reaction temperature and reaction time on the number-average degree of polymerization was also investigated. It is found that low impurities' content and low temperature are beneficial to the generation of high number-average degree of perfluorolyethers. The optimization reaction time is 24 h, and fiarther increase of reaction time does not significantly affect the average relative molecular mass. The product was characterized by IR, 19F NMR and GC-MS, and the catalytic mechanism was analyzed finally.
文摘The influences of hyperon-hyperon interaction on the overall properties of hadronic star are investigated in the framework of relativistic mean field (RMF) theory. For certain hyperon coupling, the weaker hyperon-hyperon interaction can lead to the heavier hadronic star, which accords with the observation of heavy neutron star in X-ray binaries. We find that the threshold densities of the hyperons with larger masses are brought to a lower values with the increase of the hyperon-hyperon interaction. The possibility of the existence of hyperon star is checked with the consideration of hyperon-hyperon interaction.
文摘For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 Since A #0,r B = A and A #l,r B = B, weregard A#t,rB as apath combining A and B.Our aim is to show the essential properties of St,r (AIB). The Tsallis relative operator entropy by Yanagi, Kuriyama and Furuichi can also be expanded, and by using this, we can give an expanded operator valued a-divergence and obtain its properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672308 and 11532014)Innovation Grant of Chinese Academy of Sciences
文摘Shock relations usually found in literatures are derived theoretically under the assumption of homogeneous thermodynamic properties, i.e., constant ratio of specific heats, γ. However, high temperature effects post a strong shock wave may result in thermodynamic heterogeneities and failure to the original shock relations. In this paper, the shock relations are extended to take account of high-temperature effects. Comparison indicates that the present approach is more feasible than other analytical approaches to reflect the influence of γ heterogeneity on the post-shock parameters.
文摘We present a rigorous homogenization approach for elcient computation of a class of physical problems in a one-dimensional periodic heterogeneous material. This material is represented by a spatially periodic array of unit cells with a length of More specifically, the method is applied to the diffusion, heat conduction, and wave propagation problems. Heterogeneous materials can have arbitrary position-dependent continuous or discontinuous materials properties (for example heat conductivity) within the unit cell. The final effective model includes both effective properties at the leading order and high-order contributions due to the microscopic heterogeneity. A dimensionless heterogeneity parameter ~ is defined to represent high-order contributions, shown to be in the range of [-1/12, 0], and has a universal expression for all three problems. Both effective properties and heterogeneity parameter 13 are independent oft, the microscopic scale of heterogeneity. The homogenized solution describing macroscopic variations can be obtained from the effective model. Solution with sub-unit-cell accuracy can be constructed based on the homogenized solution and its spatial derivatives. The paper represents a general approach to obtain the effective model for arbitrary periodic heterogeneous materials with position-dependent properties.
文摘In this work, thermodynamical properties of a two-dimensional (21)) Lennard-Jones (L J) fluid are studied. Here, to increase the accuracy of our theoretical calculations, the correlation functions in three-particle level (triplet) are applied. To obtain the triplet correlation functions, the Attard's source particle method is extended to 21) systems. In the Attard's procedure, the inhomogeneous Ornstein Zernike (OZ) equation is solved using the Treizenberg Zwanzwig (TZ) expression and a closure relation like the hy2ernetted-chain (HNC) approximation. In the present work, we also have performed the Monte Carlo (MC) simulation. The theoretical results are in fairly agreement with the MC simulation. Also, our results show that the approach proposed here is suitable to study the 2D LJ fluid.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB834402)the National Natural Science Foundation of China(Grant Nos.11235001,11320101004,and 11575007)the China-U.S.Theory Institute for Physics with Exotic Nuclei(CUSTIPEN)funded by the U.S.Department of Energy,Office of Science(Grant No.DESC0009971)
文摘β-decay properties of N=18-22,Z=10-14 nuclei are analyzed with a new shell-model Hamiltonian using the Gogny densitydependent interaction.The Gogny force which has been widely and successfully used in mean-field theory can provide reasonable two-body matrix elements for cross-shell calculations.The log f t values andβ-decay level schemes are systematically studied using the D1S-Gogny interaction and compared with the SDPF-M results and experimental data.It is shown that the new Hamiltonian provides reliable results forβ-decay along with subtle level schemes for this region.Shell-model calculations with Gogny interaction can lead to a successful description of nuclei in and around the N=20 island of inversion and supplements experiment where sufficient data are not available.