The interaction of mineral oxides (α-A12O3, MgO, Fe2O3, and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor. The initial reactive uptake coefficients for tile commercially available pow...The interaction of mineral oxides (α-A12O3, MgO, Fe2O3, and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor. The initial reactive uptake coefficients for tile commercially available powders are measured as (1.00±0.11)×10-4 for α-A1203, (1.66±0.23)×10-4 for MgO, (9.70±1.95)×10-5 for Fe203, and (5.22±0.9)×10-5 for SiO2. These metal oxide powders exhibit some catalytic behavior toward the decomposition of hydrogen peroxide excluding SiO2. H2O2 can be destroyed on Fe2O3 surface and O2 is formed. The experimental results suggest that the heterogeneous loss on mineral surface can represent an important sink of hydrogen peroxide.展开更多
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti...The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.展开更多
Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneo...Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.展开更多
With growing demand for propylene and increasing production of propane from shale gas,the technologies of propylene production,including direct dehydrogenation and oxidative dehydrogenation of propane,have drawn great...With growing demand for propylene and increasing production of propane from shale gas,the technologies of propylene production,including direct dehydrogenation and oxidative dehydrogenation of propane,have drawn great attention in recent years.In particular,direct dehydrogenation of propane to propylene is regarded as one of the most promising methods of propylene production because it is an on-purpose technique that exclusively yields propylene instead of a mixture of products.In this critical review,we provide the current investigations on the heterogeneous catalysts(such as Pt,CrOx,VOx,GaOx-based catalysts,and nanocarbons)used in the direct dehydrogenation of propane to propylene.A detailed comparison and discussion of the active sites,catalytic mechanisms,influencing factors(such as the structures,dispersions,and reducibilities of the catalysts and promoters),and supports for different types of catalysts is presented.Furthermore,rational designs and preparation of high-performance catalysts for propane dehydrogenation are proposed and discussed.展开更多
Herein,we report an excellent,supported Ru(III)‐ChCl/AC catalyst with lower Ru content,where the ionic complex ChRuCl4 serves as the active component for acetylene hydrochlorination.The prepared heterogeneous Ru‐10%...Herein,we report an excellent,supported Ru(III)‐ChCl/AC catalyst with lower Ru content,where the ionic complex ChRuCl4 serves as the active component for acetylene hydrochlorination.The prepared heterogeneous Ru‐10%ChCl/AC catalyst shows excellent activity and long‐term stability.In this system,ChCl provides an environment for the ChRuCl4 to be stabilized as Ru(III),thus suppressing the reduction of the active species and the aggregation of ruthenium species during the reaction.The interaction between reactants and catalyst species was investigated by catalyst characterizations in combination with DFT calculations to disclose the effect of the ChRuCl4 complex and ChCl on the catalytic performance.This inexpensive,efficient,and long‐term catalyst is a competitive candidate for application in the hydrochlorination industry.展开更多
For public health and environmental protection reasons,there is an urgent need to replace traditional fossil fuels with clean and renewable sources.Electrochemical splitting of water has the potential to produce clean...For public health and environmental protection reasons,there is an urgent need to replace traditional fossil fuels with clean and renewable sources.Electrochemical splitting of water has the potential to produce clean hydrogen as a possible solution to global energy problems.This review article introduces the rational design of molecular metal complexes based on earth-abundant metals for electrocatalytic hydrogen production in water or water-organic media.Emphasis is placed on providing insight into structure-function relationships in catalytic properties for future ligand and catalyst design.展开更多
Three ruthenium(II)complex catalysts bearing2,6‐bis(tetrazolyl)pyridine were synthesized,structurally characterized,and applied in the transfer hydrogenation of ketones.Their different catalytic activities were attri...Three ruthenium(II)complex catalysts bearing2,6‐bis(tetrazolyl)pyridine were synthesized,structurally characterized,and applied in the transfer hydrogenation of ketones.Their different catalytic activities were attributed to the different phosphine ligands on the4‐chloro‐2,6‐bis(1‐(p‐tolyl)‐1Htetrazol‐5‐yl)pyridine ruthenium(II)complexes,with that based on1,4‐bis(diphenylphosphino)butane exhibiting better catalytic activity.A variety of ketones were reduced to their corresponding alcohols with>95%conversion.展开更多
Organoboron compounds are widely used in synthetic chemistry,pharmaceutical chemistry and material chemistry.Among various organoboron compounds,benzylboronic esters are unique and highly reactive,making them suitable...Organoboron compounds are widely used in synthetic chemistry,pharmaceutical chemistry and material chemistry.Among various organoboron compounds,benzylboronic esters are unique and highly reactive,making them suitable benzylation reagents.At present,the synthetic methods for the syntheses of benzylboronic esters are still insufficient to meet their demands.It is necessary to develop novel and practical methods for their preparation.In this work,a novel copper‐catalyzed deoxygenative gem‐hydroborylation of aromatic aldehydes and ketones has been developed.This direct and operationally simple protocol provides an effective approach for the synthesis of a variety of primary and secondary benzylboronates,in which broad functional group tolerance was presented.Widely available B2pin2(pin=pinacol)was used as the boron source and alcoholic proton was applied as the hydride source.展开更多
The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides wi...The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions,in gas and liquid phase reactions.In the present review,we discuss the recent development of heterogeneous,supported monometallic gold catalysts for organic transformations emphasizing mainly liquid phase hydrogenation reactions.Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out.Applications of heterogeneous,supported monometallic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.展开更多
The asymmetric reduction of β-keto esters to their corresponding hydroxy alcohols can be performed by employing homogeneous and heterogeneous chemo- and bio-catalysis. This review covers the scope and limitations of ...The asymmetric reduction of β-keto esters to their corresponding hydroxy alcohols can be performed by employing homogeneous and heterogeneous chemo- and bio-catalysis. This review covers the scope and limitations of different catalysts and methodologies that were employed for the reaction and compare between them on the basis of catalytic performance, product separation and catalyst recycling procedure. In general, heterogeneous catalytic systems are advantageous from industrial point of views as they can be easily separated by filtration and re-used. Nickel modified with tartaric acid and sodium bromide was found to be suitable heterogeneous catalyst for the enantioselective hydrogenation, yet its performance is lower than this of homogeneous chiral metal catalysts such as Ru-BINAP. Heterogenization of the chiral complex via immobilization or entrapment using organic and inorganic supports was thus tested. However, though the resulted heterogeneous analogues were highly enantioselective and could be re-used, the activity of the system is often very low compared to homogeneous system due to mass transfer limitations. Alternatively, performing liquid phase hydrogenation under homogeneous conditions, using Ru-BINAP soluble derivatives, yielded high activit5' and enantioselectivity. Product separation and catalysts recycling were facilitated by either extraction of the product with solvent that does not dissolve the complex or by selective filtration of the product. Alternatively, precipitation of the complex at the end of the reaction was also reported.展开更多
Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of h...Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of heterogeneous catalysts have found applications in industry for the dehydrogenation of light alkanes, mainly ethane, propane, and butane. In the past three decades, a number of transition-metal complexes,particularly pincer-ligated iridium complexes, have been developed as the homogeneous catalysts for alkane dehydrogenations. The homogeneous catalyst systems operate under much milder conditions compared with the heterogeneous systems, and some systems exhibit good activity and high regioselectivity in dehydrogenation of alkanes longer than butane.展开更多
基金This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KJCX2-YW-N24, No.KZCX2-YW-Q02-03)the National Basic Research Program of China of Ministry of Science and Technology of China (No.2011CB403401) and the National Natural' Science Foundation of China (No.40925016, No.40830101, No.21077109, and No.41005070).
文摘The interaction of mineral oxides (α-A12O3, MgO, Fe2O3, and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor. The initial reactive uptake coefficients for tile commercially available powders are measured as (1.00±0.11)×10-4 for α-A1203, (1.66±0.23)×10-4 for MgO, (9.70±1.95)×10-5 for Fe203, and (5.22±0.9)×10-5 for SiO2. These metal oxide powders exhibit some catalytic behavior toward the decomposition of hydrogen peroxide excluding SiO2. H2O2 can be destroyed on Fe2O3 surface and O2 is formed. The experimental results suggest that the heterogeneous loss on mineral surface can represent an important sink of hydrogen peroxide.
文摘The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.
基金supported by National Natural Science Foundation of China(21606222,21776270)Postdoctoral Science Foundation(2017M621170,2016M601350)~~
文摘Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.
基金supported by the National Natural Science Foundation of China(21421001,21573115)the Fundamental Research Funds for the Central Universities(63185015)the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering(2017-K13)~~
文摘With growing demand for propylene and increasing production of propane from shale gas,the technologies of propylene production,including direct dehydrogenation and oxidative dehydrogenation of propane,have drawn great attention in recent years.In particular,direct dehydrogenation of propane to propylene is regarded as one of the most promising methods of propylene production because it is an on-purpose technique that exclusively yields propylene instead of a mixture of products.In this critical review,we provide the current investigations on the heterogeneous catalysts(such as Pt,CrOx,VOx,GaOx-based catalysts,and nanocarbons)used in the direct dehydrogenation of propane to propylene.A detailed comparison and discussion of the active sites,catalytic mechanisms,influencing factors(such as the structures,dispersions,and reducibilities of the catalysts and promoters),and supports for different types of catalysts is presented.Furthermore,rational designs and preparation of high-performance catalysts for propane dehydrogenation are proposed and discussed.
文摘Herein,we report an excellent,supported Ru(III)‐ChCl/AC catalyst with lower Ru content,where the ionic complex ChRuCl4 serves as the active component for acetylene hydrochlorination.The prepared heterogeneous Ru‐10%ChCl/AC catalyst shows excellent activity and long‐term stability.In this system,ChCl provides an environment for the ChRuCl4 to be stabilized as Ru(III),thus suppressing the reduction of the active species and the aggregation of ruthenium species during the reaction.The interaction between reactants and catalyst species was investigated by catalyst characterizations in combination with DFT calculations to disclose the effect of the ChRuCl4 complex and ChCl on the catalytic performance.This inexpensive,efficient,and long‐term catalyst is a competitive candidate for application in the hydrochlorination industry.
文摘For public health and environmental protection reasons,there is an urgent need to replace traditional fossil fuels with clean and renewable sources.Electrochemical splitting of water has the potential to produce clean hydrogen as a possible solution to global energy problems.This review article introduces the rational design of molecular metal complexes based on earth-abundant metals for electrocatalytic hydrogen production in water or water-organic media.Emphasis is placed on providing insight into structure-function relationships in catalytic properties for future ligand and catalyst design.
文摘Three ruthenium(II)complex catalysts bearing2,6‐bis(tetrazolyl)pyridine were synthesized,structurally characterized,and applied in the transfer hydrogenation of ketones.Their different catalytic activities were attributed to the different phosphine ligands on the4‐chloro‐2,6‐bis(1‐(p‐tolyl)‐1Htetrazol‐5‐yl)pyridine ruthenium(II)complexes,with that based on1,4‐bis(diphenylphosphino)butane exhibiting better catalytic activity.A variety of ketones were reduced to their corresponding alcohols with>95%conversion.
文摘Organoboron compounds are widely used in synthetic chemistry,pharmaceutical chemistry and material chemistry.Among various organoboron compounds,benzylboronic esters are unique and highly reactive,making them suitable benzylation reagents.At present,the synthetic methods for the syntheses of benzylboronic esters are still insufficient to meet their demands.It is necessary to develop novel and practical methods for their preparation.In this work,a novel copper‐catalyzed deoxygenative gem‐hydroborylation of aromatic aldehydes and ketones has been developed.This direct and operationally simple protocol provides an effective approach for the synthesis of a variety of primary and secondary benzylboronates,in which broad functional group tolerance was presented.Widely available B2pin2(pin=pinacol)was used as the boron source and alcoholic proton was applied as the hydride source.
基金Universiti Kebangsaan Malaysia for the financial support
文摘The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions,in gas and liquid phase reactions.In the present review,we discuss the recent development of heterogeneous,supported monometallic gold catalysts for organic transformations emphasizing mainly liquid phase hydrogenation reactions.Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out.Applications of heterogeneous,supported monometallic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.
文摘The asymmetric reduction of β-keto esters to their corresponding hydroxy alcohols can be performed by employing homogeneous and heterogeneous chemo- and bio-catalysis. This review covers the scope and limitations of different catalysts and methodologies that were employed for the reaction and compare between them on the basis of catalytic performance, product separation and catalyst recycling procedure. In general, heterogeneous catalytic systems are advantageous from industrial point of views as they can be easily separated by filtration and re-used. Nickel modified with tartaric acid and sodium bromide was found to be suitable heterogeneous catalyst for the enantioselective hydrogenation, yet its performance is lower than this of homogeneous chiral metal catalysts such as Ru-BINAP. Heterogenization of the chiral complex via immobilization or entrapment using organic and inorganic supports was thus tested. However, though the resulted heterogeneous analogues were highly enantioselective and could be re-used, the activity of the system is often very low compared to homogeneous system due to mass transfer limitations. Alternatively, performing liquid phase hydrogenation under homogeneous conditions, using Ru-BINAP soluble derivatives, yielded high activit5' and enantioselectivity. Product separation and catalysts recycling were facilitated by either extraction of the product with solvent that does not dissolve the complex or by selective filtration of the product. Alternatively, precipitation of the complex at the end of the reaction was also reported.
基金supported by the National Basic Research Program of China(2015CB856600)the National Natural Science Foundation of China(21422209,21432011,21421091)
文摘Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of heterogeneous catalysts have found applications in industry for the dehydrogenation of light alkanes, mainly ethane, propane, and butane. In the past three decades, a number of transition-metal complexes,particularly pincer-ligated iridium complexes, have been developed as the homogeneous catalysts for alkane dehydrogenations. The homogeneous catalyst systems operate under much milder conditions compared with the heterogeneous systems, and some systems exhibit good activity and high regioselectivity in dehydrogenation of alkanes longer than butane.