期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
低秩矩阵分解在母线坏数据辨识与修复中的应用 被引量:12
1
作者 王毅 李鼎睿 康重庆 《电网技术》 EI CSCD 北大核心 2017年第6期1972-1979,共8页
母线负荷分析与预测对电力系统的安全稳定具有重要意义。目前我国采集到的母线负荷数据中含有较多且类型不同的坏数据,给母线负荷的分析的准确性与预测的精确性带来较大影响。文中提出了一种基于低秩矩阵分解的母线坏数据辨识与修复方... 母线负荷分析与预测对电力系统的安全稳定具有重要意义。目前我国采集到的母线负荷数据中含有较多且类型不同的坏数据,给母线负荷的分析的准确性与预测的精确性带来较大影响。文中提出了一种基于低秩矩阵分解的母线坏数据辨识与修复方法。从母线数据本身出发,首先分析了母线数据的低秩特性,研究不同类型坏数据产生的原因;然后建立了一种基于低秩矩阵分解的母线坏数据辨识与修复的模型,并给出了基于阈值迭代法(iterative thresholding,IT)的模型求解方法;最后,利用广东省母线负荷实际算例进行了分析,并利用修复前后的母线数据进行虚拟预测对比,结果实现了坏数据的有效恢复和预测精度的提高。 展开更多
关键词 母线负荷 低秩矩阵分解 数据辨识 坏数据修复 负荷预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部