The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction a...The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.展开更多
Eu^2+/Eu^3+ mixed-valence couple co-doped material holds great potential for ratiometric temperature sensing owing to its different electronic configurations and electron-lattice interaction. Here, the correlation of ...Eu^2+/Eu^3+ mixed-valence couple co-doped material holds great potential for ratiometric temperature sensing owing to its different electronic configurations and electron-lattice interaction. Here, the correlation of nonstoichiometry in chemical composition, phase structures and luminescence propertis of Ca2 Al2 Si1-xO7:Eu is discussed, and controlled Eu^2+/Eu^3+ valence and tunable emission appear with decreasing Si content. It is found that the 2 Ca^2++ Si^4+←→ Eu^2++ Eu^3++ Al^3+ cosubstitution accounts for the structural stability and charge balance mechanism. Benefiting from the diverse thermal dependent emission behaviors of Eu^2+ and Eu^3+, Ca2 Al2 Si1-xO7:Eu thermometer exhibits excellent temperature sensing performances with the maximum absolute and relative sensitivity being 0.024 K-1(at 303 K) and 2.46% K-1(at 443 K) and good signal discriminability. We propose that the emission quenching of Eu^2+ is ascribed to 5 d electrons depopulation through Eu^2+/Eu^3+ intervalence charge transfer state, while the quenching of Eu^3+ comes from multiphonon relaxation. Our work demonstrates the potential of Ca2 Al2 Si1-xO7:Eu for noncontact optical thermometry, and also highlights mixed-valence europium-containing compounds toward temperature sensing.展开更多
文摘The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.
基金supported by the National Natural Science Foundation of China (51722202, 51972118 and 51572023)the Guangdong Provincial Science & Technology Project (2018A050506004)Innovation Projects of Department of Education of Guangdong Province (2018KQNCX265)
文摘Eu^2+/Eu^3+ mixed-valence couple co-doped material holds great potential for ratiometric temperature sensing owing to its different electronic configurations and electron-lattice interaction. Here, the correlation of nonstoichiometry in chemical composition, phase structures and luminescence propertis of Ca2 Al2 Si1-xO7:Eu is discussed, and controlled Eu^2+/Eu^3+ valence and tunable emission appear with decreasing Si content. It is found that the 2 Ca^2++ Si^4+←→ Eu^2++ Eu^3++ Al^3+ cosubstitution accounts for the structural stability and charge balance mechanism. Benefiting from the diverse thermal dependent emission behaviors of Eu^2+ and Eu^3+, Ca2 Al2 Si1-xO7:Eu thermometer exhibits excellent temperature sensing performances with the maximum absolute and relative sensitivity being 0.024 K-1(at 303 K) and 2.46% K-1(at 443 K) and good signal discriminability. We propose that the emission quenching of Eu^2+ is ascribed to 5 d electrons depopulation through Eu^2+/Eu^3+ intervalence charge transfer state, while the quenching of Eu^3+ comes from multiphonon relaxation. Our work demonstrates the potential of Ca2 Al2 Si1-xO7:Eu for noncontact optical thermometry, and also highlights mixed-valence europium-containing compounds toward temperature sensing.