文中将坐标伸缩完全匹配层CPML引入到弱无条件稳定算法HIE-FDTD中研究其吸波性能。详细推导了2维TE波模型中CPML在HIE-FDTD算法中应用的差分公式。为检验本文所提方法的吸波效能,建立了计算模型,将其与其它吸收边界条件的吸波性能进行...文中将坐标伸缩完全匹配层CPML引入到弱无条件稳定算法HIE-FDTD中研究其吸波性能。详细推导了2维TE波模型中CPML在HIE-FDTD算法中应用的差分公式。为检验本文所提方法的吸波效能,建立了计算模型,将其与其它吸收边界条件的吸波性能进行了综合比较,计算了HIE-FDTD算法选取不同条件数时的反射误差,并详细说明如何合理选取α,κmax和σmax来实现最佳相对误差。结果显示:当将本文所提方法的CPML层数设置为8时,其反射误差为-62 d B,低于传统FDTD方法的-58 d B;当选取α=0.05,κmax=10,σmax/σopt=1.3可以实现低至-83 d B的最大相对误差;在仿真中,其比传统FDTD方法也约减少48%的计算时间。展开更多
文摘文中将坐标伸缩完全匹配层CPML引入到弱无条件稳定算法HIE-FDTD中研究其吸波性能。详细推导了2维TE波模型中CPML在HIE-FDTD算法中应用的差分公式。为检验本文所提方法的吸波效能,建立了计算模型,将其与其它吸收边界条件的吸波性能进行了综合比较,计算了HIE-FDTD算法选取不同条件数时的反射误差,并详细说明如何合理选取α,κmax和σmax来实现最佳相对误差。结果显示:当将本文所提方法的CPML层数设置为8时,其反射误差为-62 d B,低于传统FDTD方法的-58 d B;当选取α=0.05,κmax=10,σmax/σopt=1.3可以实现低至-83 d B的最大相对误差;在仿真中,其比传统FDTD方法也约减少48%的计算时间。