期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
虚位移及其坐标变分运算的分析
1
作者 杨佩兰 郭彦 《邯郸大学学报》 1999年第1期26-29,共4页
正确理解虚位移的概念并掌握其计算方法,在以虚位移原理为基础的分析静力学中是十分重要的。但在一般理论力学教材中对虚位移的坐标变分运算不做深入地分析,为便于对教材的深入理解,有利于教学,本文对虚位移及对一质点系,在取定直... 正确理解虚位移的概念并掌握其计算方法,在以虚位移原理为基础的分析静力学中是十分重要的。但在一般理论力学教材中对虚位移的坐标变分运算不做深入地分析,为便于对教材的深入理解,有利于教学,本文对虚位移及对一质点系,在取定直角坐标变分与广义坐标变分之间的关系进行了分析,并给出了计算虚位移的几种方法。 展开更多
关键词 虚位移 坐标变分 广义坐标 约柬 自由度 理论力学
下载PDF
虚位移及其坐标变分运算的分析
2
作者 杨佩兰 《荆门大学学报》 1995年第1期18-21,共4页
关键词 虚位移 坐标变分运算 静力学
全文增补中
超球坐标下原子、分子体系的变分计算——氦原子和氢负离子基态
3
作者 邓从豪 张瑞勤 冯大诚 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 1993年第2期228-232,共5页
应用超球坐标表示氦原子和氢负离子的薛定谔方程。将二电子原子在三维空间中的运动转化为单电子原子在六维空间中受广义库仑力作用的运动。我们给出了六维空间广义角动量算符的本征值与本征函数,并以此本征函数做基构造超球波函数,得到... 应用超球坐标表示氦原子和氢负离子的薛定谔方程。将二电子原子在三维空间中的运动转化为单电子原子在六维空间中受广义库仑力作用的运动。我们给出了六维空间广义角动量算符的本征值与本征函数,并以此本征函数做基构造超球波函数,得到超球径微分方程。以广义Laguerre多项式表示超球径波函数,运用密度矩阵和线性变分法得到非正交基下超球径波函数满足的久期方程,最后求得能量和波函数。计算结果与精确的计算符合良好。 展开更多
关键词 超球坐标线性 非正交基 氦原子 氢负离子 基态 量子化学 计算 薛定谔方程
下载PDF
Tensile stress-strain behavior of metallic alloys 被引量:1
4
作者 Jun CAO Fu-guo LI +1 位作者 Xin-kai MA Zhan-kun SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2443-2453,共11页
Tensile stress-strain curves of five metallic alloys,i.e.,SKH51,STS316L,Ti-6Al-4V,Al6061and Inconel600were analyzed to investigate the working hardening behavior.The constitutive parameters of three constitutive equat... Tensile stress-strain curves of five metallic alloys,i.e.,SKH51,STS316L,Ti-6Al-4V,Al6061and Inconel600were analyzed to investigate the working hardening behavior.The constitutive parameters of three constitutive equations,i.e.,the Hollomon,Swift and Voce equations,were compared by using different methods.A new working hardening parameter was proposed to characterize the working hardening behavior in different deformation stages.It is found that Voce equation is suitable to describe stress-strain curves in large strain region.Meanwhile,the predicting accuracy of ultimate tensile strength by Voce equation is the best.The working hardening behavior of SKH51is different from the other four metallic alloys. 展开更多
关键词 constitutive equation tensile stress-strain behavior piecewise fitting coordinate transformation
下载PDF
Mathieu Progressive Waves
5
作者 Andrei B.Utkin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第10期733-739,共7页
A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman tr... A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal eurvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type. 展开更多
关键词 wave equation Bateman transform progressive wave Mathieu function
下载PDF
Transformation Between Eigenfunctions of Three Components of Geometric Momentum on Two-Dimensional Sphere
6
作者 孙浩然 寻大毛 +1 位作者 唐良辉 刘全慧 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第7期31-33,共3页
A technique of coordinate transformation is devised to overcome the computational difficulty associated with the direct transformation between eigenfunctions of three components of the geometric momentum on two-dimens... A technique of coordinate transformation is devised to overcome the computational difficulty associated with the direct transformation between eigenfunctions of three components of the geometric momentum on two-dimensional spherical surface, and the computations are firstly carried out in new coordinates and secondly the results are transformed back into the original coordinates. The eigenfunctions of different components of geometric momentum is explicitly demonstrated to transform under the spatial rotations in the precise way we anticipate. 展开更多
关键词 quantum mechanics differential geometry partial differential equations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部