期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
坐标变换系数张量观与杂交张量概念分析 被引量:3
1
作者 殷雅俊 《力学与实践》 北大核心 2019年第1期1-9,共9页
本文致力于澄清一个十分基本的问题:坐标变换系数是否为张量?传统观念认为,坐标变换系数不是张量。为了揭示坐标变换系数的本质,本文采用"从一般到特殊"的研究策略,重塑了张量的内涵和外延,引入了杂交张量概念,进而颠覆了坐... 本文致力于澄清一个十分基本的问题:坐标变换系数是否为张量?传统观念认为,坐标变换系数不是张量。为了揭示坐标变换系数的本质,本文采用"从一般到特殊"的研究策略,重塑了张量的内涵和外延,引入了杂交张量概念,进而颠覆了坐标变换系数不是张量的传统观念,确切地讲,它就是度量张量的杂交分量。这一结果扩张了张量概念的集合,提升了张量分析学内在的统一性、对称性和不变性,减少了连续介质力学的运算量。 展开更多
关键词 坐标变换系数 杂交张量 杂交分量 度量张量的杂交分量
下载PDF
平面四边形单元畸变的一种度量方法 被引量:3
2
作者 周正华 周扣华 《世界地震工程》 CSCD 2001年第3期65-69,共5页
给出了度量平面四边形单元畸变的畸变参数定义,并证明了畸变参数能用具有明确物理含义的坐标变换多项式系数和雅可比矩阵表示.
关键词 平面四边形单元 畸变参数 雅可比矩阵 坐标变换多项式系数 工程数值分析
下载PDF
The seamless model for three-dimensional datum transformation 被引量:19
3
作者 LI BoFeng SHEN YunZhong LI WeiXiao 《Science China Earth Sciences》 SCIE EI CAS 2012年第12期2099-2108,共10页
With extensive applications of space geodesy, three-dimensional datum transformation model has been necessarily used to transform the coordinates in the different coordinate systems.Its essence is to predict the coord... With extensive applications of space geodesy, three-dimensional datum transformation model has been necessarily used to transform the coordinates in the different coordinate systems.Its essence is to predict the coordinates of non-common points in the second coordinate system based on their coordinates in the first coordinate system and the coordinates of common points in two coordinate systems.Traditionally, the computation of seven transformation parameters and the transformation of noncommon points are individually implemented, in which the errors of coordinates are taken into account only in the second system although the coordinates in both two systems are inevitably contaminated by the random errors.Moreover, the coordinate errors of non-common points are disregarded when they are transformed using the solved transformation parameters.Here we propose the seamless (rigorous) datum transformation model to compute the transformation parameters and transform the non-common points integratively, considering the errors of all coordinates in both coordinate systems.As a result, a nonlinear coordinate transformation model is formulated.Based on the Gauss-Newton algorithm and the numerical characteristics of transformation parameters, two linear versions of the established nonlinear model are individually derived.Then the least-squares collocation (prediction) method is employed to trivially solve these linear models.Finally, the simulation experiment is carried out to demonstrate the performance and benefits of the presented method.The results show that the presented method can significantly improve the precision of the coordinate transformation, especially when the non-common points are strongly correlated with the common points used to compute the transformation parameters. 展开更多
关键词 coordinate transformation COLLOCATION total least squares Bursa model Gauss-Newton method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部