期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非线性方程的保辛近似算法 被引量:3
1
作者 孙雁 陈晓辉 钟万勰 《力学季刊》 CSCD 北大核心 2006年第3期365-370,共6页
保守体系的微分方程可用Hamilton体系的方法描述,其特点是保辛。两个辛矩阵之和不能保辛,两个辛矩阵的乘积仍是辛矩阵。最常用的小参数摄动法用的是加法,因此对辛矩阵不能保辛。从保辛的角度,要用正则变换。本文针对非线性微分方程,运... 保守体系的微分方程可用Hamilton体系的方法描述,其特点是保辛。两个辛矩阵之和不能保辛,两个辛矩阵的乘积仍是辛矩阵。最常用的小参数摄动法用的是加法,因此对辛矩阵不能保辛。从保辛的角度,要用正则变换。本文针对非线性微分方程,运用自变量坐标变换,对原系统进行变换。由此推导出变换后系统的变分原理。引入Hamilton对偶变量,通过数学变换,得到变系数非线性方程。针对该方程,本文提出了保辛摄动算法。通过数值算例,对不同步长下,保辛摄动法、多尺度摄动法、龙格库塔法和精确解的结果做了比较。数值例题表明,对于非线性方程,本文提出的保辛摄动算法有良好的精度。在步长增大的情况下,保辛摄动保持了良好的稳定性。 展开更多
关键词 保辛 坐标正则变换 摄动 非线性方程
下载PDF
短波近似的保辛算法
2
作者 钟万勰 孙雁 《计算力学学报》 EI CAS CSCD 北大核心 2008年第1期1-7,共7页
WKBJ短波近似是最常用的有效求解方法之一。保守体系的微分方程可用Hamilton体系的方法描述,其特点是保辛。保辛给出保守体系结构最重要的特性。但WKBJ短波近似却未曾考虑保辛的问题。WKBJ近似可用自变量坐标变换,然后再给出其保辛摄动... WKBJ短波近似是最常用的有效求解方法之一。保守体系的微分方程可用Hamilton体系的方法描述,其特点是保辛。保辛给出保守体系结构最重要的特性。但WKBJ短波近似却未曾考虑保辛的问题。WKBJ近似可用自变量坐标变换,然后再给出其保辛摄动。数值例题展示了本文变换保辛算法的有效性。 展开更多
关键词 保辛 坐标正则变换 混合能密度 短波近似
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部