The representation method of heterogeneous material information is one of the key technologies of heterogeneous object modeling, but almost all the existing methods cannot represent non-uniform rational B-spline (NU...The representation method of heterogeneous material information is one of the key technologies of heterogeneous object modeling, but almost all the existing methods cannot represent non-uniform rational B-spline (NURBS) entity. According to the characteristics of NURBS, a novel data structure, named NURBS material data structure, is proposed, in which the geometrical coordinates, weights and material coordinates of NURBS heterogene- ous objects can be represented simultaneously. Based on this data structure, both direct representation method and inverse construction method of heterogeneous NURBS objects are introduced. In the direct representation method, three forms of NURBS heterogeneous objects are introduced by giving the geometry and material information of con- trol points, among which the homogeneous coordinates form is employed for its brevity and easy programming. In the inverse construction method, continuous heterogeneous curves and surfaces can he obtained by interpolating discrete points and curves with specified material information. Some examples are given to show the effectiveness of the pro- posed methods.展开更多
A historical run(1993–2014)of a global,eddy-permitting,hybrid coordinate ocean model(HYCOM)is evaluated against observations.The authors evaluate several metrics in the model,including the spatial distribution of sea...A historical run(1993–2014)of a global,eddy-permitting,hybrid coordinate ocean model(HYCOM)is evaluated against observations.The authors evaluate several metrics in the model,including the spatial distribution of sea surface temperature(SST),the zonally averaged seasonal cycle of SST,the variability of the sea level anomaly(SLA),the zonally and meridionally averaged temperature and salinity,and the equatorial undercurrent.It is found that the simulated seasonal cycle of SST is 0.2–0.8 stronger than observed at midlatitudes.The modeled SST is 0.29°C warmer than the observed for the global ocean.the structure of the subsurface temperature and salinity is similar to the observed.moreover,the variability of SLA exhibits the same pattern as observed.The modeled equatorial undercurrent in the pacific ocean is weaker than observed,but stronger than the ecco reanalysis product.overall,the model can reproduce the large-scale ocean states,and is suitable for analyses seeking to better understand the dynamics and thermodynamics of the upper ocean,as well as ocean variability.展开更多
基金Supported by National Natural Science Foundation of China (No. 60973079)Natural Science Foundation of Hebei Province (No. E2006000039)
文摘The representation method of heterogeneous material information is one of the key technologies of heterogeneous object modeling, but almost all the existing methods cannot represent non-uniform rational B-spline (NURBS) entity. According to the characteristics of NURBS, a novel data structure, named NURBS material data structure, is proposed, in which the geometrical coordinates, weights and material coordinates of NURBS heterogene- ous objects can be represented simultaneously. Based on this data structure, both direct representation method and inverse construction method of heterogeneous NURBS objects are introduced. In the direct representation method, three forms of NURBS heterogeneous objects are introduced by giving the geometry and material information of con- trol points, among which the homogeneous coordinates form is employed for its brevity and easy programming. In the inverse construction method, continuous heterogeneous curves and surfaces can he obtained by interpolating discrete points and curves with specified material information. Some examples are given to show the effectiveness of the pro- posed methods.
基金supported by the National Key R&D Program of China [Grant No.2016YFC1401705]the National Natural Science Foundation of China [Grant Nos.41176015 and41776041]+2 种基金the Chinese Academy Sciences Project ‘Western Pacific Ocean System:Structure,Dynamics and Consequences’[Grant No.XDA11010203]confidencial military project [Grant No.315030401]the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences [Project No.LTO1501]
文摘A historical run(1993–2014)of a global,eddy-permitting,hybrid coordinate ocean model(HYCOM)is evaluated against observations.The authors evaluate several metrics in the model,including the spatial distribution of sea surface temperature(SST),the zonally averaged seasonal cycle of SST,the variability of the sea level anomaly(SLA),the zonally and meridionally averaged temperature and salinity,and the equatorial undercurrent.It is found that the simulated seasonal cycle of SST is 0.2–0.8 stronger than observed at midlatitudes.The modeled SST is 0.29°C warmer than the observed for the global ocean.the structure of the subsurface temperature and salinity is similar to the observed.moreover,the variability of SLA exhibits the same pattern as observed.The modeled equatorial undercurrent in the pacific ocean is weaker than observed,but stronger than the ecco reanalysis product.overall,the model can reproduce the large-scale ocean states,and is suitable for analyses seeking to better understand the dynamics and thermodynamics of the upper ocean,as well as ocean variability.