A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. ...A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. The isopycnic coordinate performs well at tracking the depth variance of the thermocline, and is suitable for simulation of internal tides. This model consists of external and internal modes, and barotropic and baroclinic motions are calculated in the two modes, respectively. The capability of simulating internal tides was verified by comparing model results with an analytical solution. The model was then applied to the simulation of internal tides in the South China Sea (SCS) with the forcing of M2 and K1 tidal constituents. The results show that internal tides in the SCS are mainly generated in the Luzon Strait. The generated M2 internal tides propagate away in three different directions (branches). The branch with the widest tidal beam propagates eastward into the Pacific Ocean, the most energetic branch propagates westward toward Dongsha Island, and the least energetic branch propagates southwestward into the basin of the SCS. The generated KI internal tides propagate in two different directions (branches). One branch propagates eastward into the Pacific Ocean, and the other branch propagates southwestward into the SCS basin. The steepening process of internal tides due to shoaling effects is described briefly. Meridionally integrated westward energy fluxes into the SCS are comparable to the meridionally integrated eastward energy fluxes into the Pacific Ocean.展开更多
Deriving reaction coordinates for the characterization of chemical reactions has long been a demanding task.In our previous work[ACS Cent.Sci.3,407(2017)],the reaction coordinate of a(retro-)Claisen rearrangement in a...Deriving reaction coordinates for the characterization of chemical reactions has long been a demanding task.In our previous work[ACS Cent.Sci.3,407(2017)],the reaction coordinate of a(retro-)Claisen rearrangement in aqueous solution optimized through a Bayesian measure,a linear combination of bond lengths formation and breakage,was judged to be optimal among all trails.Here,considering the nonlinearity of the transition state,we use isometric mapping and locally linear embedding to obtain one reaction coordinate which is composed of a few collective variables.With these methods,we find a more reasonable and powerful one-dimensional reaction coordinate,which can well describe the reaction progression.To explore the reaction mechanism,we analyze the contribution of intrinsic molecular properties and the solventsolute interactions to the nonlinear reaction coordinate.Furthermore,another coordinate is identified to characterize the heterogeneity of reaction mechanisms.展开更多
To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to t...To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2007AA09Z118,2008AA09A402)the National Natural Science Foundation of China(No.41076006)+1 种基金the International Cooperate Fund of NNSFC(No.40810104046)the Program for New Century Excellent Talents in University(111 Project)(No.B07036)
文摘A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. The isopycnic coordinate performs well at tracking the depth variance of the thermocline, and is suitable for simulation of internal tides. This model consists of external and internal modes, and barotropic and baroclinic motions are calculated in the two modes, respectively. The capability of simulating internal tides was verified by comparing model results with an analytical solution. The model was then applied to the simulation of internal tides in the South China Sea (SCS) with the forcing of M2 and K1 tidal constituents. The results show that internal tides in the SCS are mainly generated in the Luzon Strait. The generated M2 internal tides propagate away in three different directions (branches). The branch with the widest tidal beam propagates eastward into the Pacific Ocean, the most energetic branch propagates westward toward Dongsha Island, and the least energetic branch propagates southwestward into the basin of the SCS. The generated KI internal tides propagate in two different directions (branches). One branch propagates eastward into the Pacific Ocean, and the other branch propagates southwestward into the SCS basin. The steepening process of internal tides due to shoaling effects is described briefly. Meridionally integrated westward energy fluxes into the SCS are comparable to the meridionally integrated eastward energy fluxes into the Pacific Ocean.
基金supported by the National Nature Science Foundation of China(No.21927901 and No.92053202 to Yi Qin Gao)Zhen Zhang is supported by the Education Department of Hebei Province(QN2018308)+1 种基金Post-doctoral Foundation Project of Tangshan Normal University(2018A03)the Nature Science Foundation of Hebei Province of China(E2019105073)。
文摘Deriving reaction coordinates for the characterization of chemical reactions has long been a demanding task.In our previous work[ACS Cent.Sci.3,407(2017)],the reaction coordinate of a(retro-)Claisen rearrangement in aqueous solution optimized through a Bayesian measure,a linear combination of bond lengths formation and breakage,was judged to be optimal among all trails.Here,considering the nonlinearity of the transition state,we use isometric mapping and locally linear embedding to obtain one reaction coordinate which is composed of a few collective variables.With these methods,we find a more reasonable and powerful one-dimensional reaction coordinate,which can well describe the reaction progression.To explore the reaction mechanism,we analyze the contribution of intrinsic molecular properties and the solventsolute interactions to the nonlinear reaction coordinate.Furthermore,another coordinate is identified to characterize the heterogeneity of reaction mechanisms.
基金Project(020940) supported by the Natural Science Foundation of Guangdong Province,China
文摘To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.