We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for alloca...We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for allocating trucks by route according to their operating performances in a truck-shovel system of an open-pit mine, so as to maximize the overall productivity of the fleet. We implement the framework in an originally designed and specifically developed simulator-optimizer software tool. We make an application on a real open-pit mine case study taking into account the stochasticity of the equipment behavior and environment. The total system production values obtained with and without considering the equipment reliability, availability and maintainability (RAM) characteristics are compared. We show that by taking into account the truck and shovel RAM aspects, we can maximize the total production of the system and obtain specific information on the production availability and productivity of its components.展开更多
The uncertainty in assessing the numerous atmospheric pollutants transported via wind from arid and semi-arid regions is affecting the glacial ecosystem. In our study area due to the complexity of the system, a promin...The uncertainty in assessing the numerous atmospheric pollutants transported via wind from arid and semi-arid regions is affecting the glacial ecosystem. In our study area due to the complexity of the system, a prominent seasonal difference noticed among major ions(Ca^(2+), Mg^(2+), SO_4^(2-), and NO_3^-). There is a need for understanding the ions cycling as a whole and the directionality of the feedback loops in the system. Therefore, we provide an appraisal of our current hypothesis for seasonal difference in major ion concentration from snow samples for two corresponding years(2013 and 2015) at Dokriani Glacier. A systematic study of chemical compositionsin the shallow snow pit from Dokriani Glacier was undertaken for the pre-monsoon season to understand the cycling of major ions from atmosphere to solute acquisition process. The intimating connections of ions cycling in snow and its temporal behavior was observed and analyzed through various statistical tests. Among major ions, the SO_4^(2-)has the highest concentration among anions on an average considered as 14.21% in 2013 and 29.46% in 2015. On the other side Ca^(2+) is the dominant cation contributing 28.22% in 2013 and 15.3% in 2015 on average. The average ratio of Na+/Cl-was higher in 2013 whereas lower in 2015. The backward trajectory analysis suggests the possible sources of the ions transported from Central Asia through the Western Disturbance(WD) as a prominent source of winter precipitation mainly in the Central Himalaya. Ionicconcentration of Ca^(2+) in cations was highly dominated while in anion SO_4^(2-)played the major role. Factor analysis and correlation matrix suggested that, the precipitation chemistry is mostly influenced by anthropogenic, crustal, and sea salt sources over the studied region. The elemental cycling through ocean, atmosphere and biosphere opens up new ways to understand the geochemical processes operating at the glacierized catchments of the Himalaya. Moreover, increasing the field-based studies in the coming decades would also have the certain advantage in overcoming the conceptual and computational geochemical modelling difficulties.展开更多
文摘We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for allocating trucks by route according to their operating performances in a truck-shovel system of an open-pit mine, so as to maximize the overall productivity of the fleet. We implement the framework in an originally designed and specifically developed simulator-optimizer software tool. We make an application on a real open-pit mine case study taking into account the stochasticity of the equipment behavior and environment. The total system production values obtained with and without considering the equipment reliability, availability and maintainability (RAM) characteristics are compared. We show that by taking into account the truck and shovel RAM aspects, we can maximize the total production of the system and obtain specific information on the production availability and productivity of its components.
基金funded by the Department of Science and Technology,Government of India,New Delhi
文摘The uncertainty in assessing the numerous atmospheric pollutants transported via wind from arid and semi-arid regions is affecting the glacial ecosystem. In our study area due to the complexity of the system, a prominent seasonal difference noticed among major ions(Ca^(2+), Mg^(2+), SO_4^(2-), and NO_3^-). There is a need for understanding the ions cycling as a whole and the directionality of the feedback loops in the system. Therefore, we provide an appraisal of our current hypothesis for seasonal difference in major ion concentration from snow samples for two corresponding years(2013 and 2015) at Dokriani Glacier. A systematic study of chemical compositionsin the shallow snow pit from Dokriani Glacier was undertaken for the pre-monsoon season to understand the cycling of major ions from atmosphere to solute acquisition process. The intimating connections of ions cycling in snow and its temporal behavior was observed and analyzed through various statistical tests. Among major ions, the SO_4^(2-)has the highest concentration among anions on an average considered as 14.21% in 2013 and 29.46% in 2015. On the other side Ca^(2+) is the dominant cation contributing 28.22% in 2013 and 15.3% in 2015 on average. The average ratio of Na+/Cl-was higher in 2013 whereas lower in 2015. The backward trajectory analysis suggests the possible sources of the ions transported from Central Asia through the Western Disturbance(WD) as a prominent source of winter precipitation mainly in the Central Himalaya. Ionicconcentration of Ca^(2+) in cations was highly dominated while in anion SO_4^(2-)played the major role. Factor analysis and correlation matrix suggested that, the precipitation chemistry is mostly influenced by anthropogenic, crustal, and sea salt sources over the studied region. The elemental cycling through ocean, atmosphere and biosphere opens up new ways to understand the geochemical processes operating at the glacierized catchments of the Himalaya. Moreover, increasing the field-based studies in the coming decades would also have the certain advantage in overcoming the conceptual and computational geochemical modelling difficulties.