期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于L1-范数和弹性网约束的鲁棒稀疏块PCA 被引量:1
1
作者 唐肝翌 卢桂馥 +2 位作者 王勇 范莉莉 杜扬帆 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2022年第4期102-109,共8页
块主成份分析(block principal component analysis,BPCA)是一种重要的子空间学习方法,能充分利用图像矩阵的部分关联.基于L1-范数的BPCA是近年来发展起来的鲁棒降维的有效方法.本研究提出了一种新的鲁棒稀疏BPCA方法,称之为BPCAL1-S.... 块主成份分析(block principal component analysis,BPCA)是一种重要的子空间学习方法,能充分利用图像矩阵的部分关联.基于L1-范数的BPCA是近年来发展起来的鲁棒降维的有效方法.本研究提出了一种新的鲁棒稀疏BPCA方法,称之为BPCAL1-S.该方法相对于传统的基于L2-范数的PCA对噪声更加鲁棒.为了建立稀疏模型,优化过程中引入弹性网,联合使用Lasso与Ridge惩罚因子进行约束.提出了一种贪心算法逐个提取特征向量,对迭代过程的收敛性做了理论证明.将BPCAL1-S应用于图像分类与图像重构,实验结果验证了该方法的有效性. 展开更多
关键词 块主成份分析 L1-范数 弹性网 稀疏建模 子空间学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部