The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion pr...The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion properties of the(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were investigated by X-ray diffraction, scanning electron microscopy, compressive tests and corrosion tests. It has been found that the addition of Ti higher than 4%(mole fraction) causes the formation of many crystalline phases in the alloy. The alloys with 1%-3% Ti display an obvious yield stage on their compressive stress-strain curves. An appropriate addition of Ti can improve the strength and ductility of the alloys. All the alloys have high corrosion resistance in 1 mol/L Na OH solution, and are corroded in 1 mol/L HCl solution. However, the appropriate addition of Ti can significantly improve the corrosion resistance of the alloys in HCl solution.展开更多
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch...Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.展开更多
The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by ...The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by differential scanning calorimetry (DSC). The minor-addition of Fe obviously extends the supercooled liquid region ΔTx. The plastic strain of the Cu44Zr48Al7Fe bulk metallic glass is about 1.5%. The microstructures were examined by transmission electron microscopy (TEM). It is found that when 1%-2% Fe (mole fraction) were introduced into the CuZrAl alloy matrix, nanoscale phase separation occurs in the as-prepared Cu44Zr48Al7Fe bulk metallic glass.展开更多
Bulk metallic glass(BMG) rods Fe71Mo5-xNbxP12C10B2(x=1,2,3,4 and 5) with diameter of 1 or 2 mm were synthesized by copper mold casting.The effects of Nb substitution for Mo on the structure,thermal and mechanical ...Bulk metallic glass(BMG) rods Fe71Mo5-xNbxP12C10B2(x=1,2,3,4 and 5) with diameter of 1 or 2 mm were synthesized by copper mold casting.The effects of Nb substitution for Mo on the structure,thermal and mechanical properties of Fe71Mo5-xNbxP12C10B2 alloys were studied by X-ray diffraction,differential scanning calorimetry and compressive testing.The results show that the substitution of Nb for Mo leads to a decreased glass forming ability,but with plasticity of 1.0%,the fracture strength of Fe71Mo2Nb3P12C10B2 alloy increases up to 4.0 GPa.The improvement of the fracture strength is discussed in terms of the enhancement of atomic bonding nature and the favorite formation of a network-like structure due to the substitution of Nb for Mo.展开更多
The corrosion behavior of bulk metallic glasses(BMGs)(Fe41Co7Cr15Mo14C15B6Y2)100-xCrx(x=0,4,8,12,molar fraction,%)was investigated in1mol/L HCl aqueous solution with electrochemical tests.The electrochemical measureme...The corrosion behavior of bulk metallic glasses(BMGs)(Fe41Co7Cr15Mo14C15B6Y2)100-xCrx(x=0,4,8,12,molar fraction,%)was investigated in1mol/L HCl aqueous solution with electrochemical tests.The electrochemical measurements demonstrate that the passive current density of Fe-based amorphous alloy is reduced by about one order of magnitude,and meanwhile,the stability of passive film can be guaranteed by the Cr/Mo molar ratio.The Mott–Schottky(M–S)curves show that the passive film is the densest when the molar ratio of Cr/Mo is between1.37and1.69.X-ray photoelectron spectroscopy(XPS)analysis was performed to clarify chemical states of elements in the passive films.The results show that the corrosion resistance of the alloy is related to the molar ratio of Cr/Mo.The stability of passive film is determined by the synergistic action of Cr and Mo elements.The main component of the passive film is Cr3+oxide.When the potential is greater than0.5V(vs SCE),Mo6+ions play an important role in keeping the stability of the passive film.The appropriate molar ratio of Cr/Mo can reduce the dissolution rate of the passive film.展开更多
In the present study,high-zirconium ternary Zr-Al-Fe bulk metallic glasses(BMGs) with low Young's modulus and good plasticity were developed.Zr75 Al7.5 Fe17.5 BMG exhibits a low Young's modulus of 70 GPa and h...In the present study,high-zirconium ternary Zr-Al-Fe bulk metallic glasses(BMGs) with low Young's modulus and good plasticity were developed.Zr75 Al7.5 Fe17.5 BMG exhibits a low Young's modulus of 70 GPa and high Poisson's ratio of 0.403.Pronounced plasticity was demonstrated under both compression and bending conditions for the BMGs.Furthermore,the alloys show high corrosion resistance in phosphate buffered solution.The combination of desirable mechanical and chemical properties implies potential for biomedical applications.展开更多
In this paper, high-zirconium Zr66+2xAl9-x(Ni1/3Cu2/3)25-x (x=0,1,2 at.%) bulk metallic glasses with high strength and large duc- tility were fabricated by copper mould casting. The effects of zirconium content o...In this paper, high-zirconium Zr66+2xAl9-x(Ni1/3Cu2/3)25-x (x=0,1,2 at.%) bulk metallic glasses with high strength and large duc- tility were fabricated by copper mould casting. The effects of zirconium content on the glass-forming ability (GFA), thermal properties and mechanical properties were investigated using X-ray diffractometer (XRD), differential scanning calorimeter (DSC), and mechanical testing system in compressive and three-point bending modes, respectively. The high-zirconium BMGs show the critical diameters of 3-5 ram, the supercooled liquid region ranging from 70 K to 99 K, and the yield strength of over 1700 MPa. The Zr70Al7(Ni1/3Cu2/3)23 BMG exhibits a large compressive plastic strain up to 21% and a high notch toughness value of 60.6 MPa m1/2. The increase in Zr content results in the decrease in GFA and thermostability, and in the improvement of plasticity under compressive and three-point bending conditions. The superior plasticity of high-zirconium BMGs is at- tributed to their high Poisson's ratio and small elastic modulus ratioμl/B.展开更多
基金Projects(51171041,51104047) supported by the National Natural Science Foundation of ChinaProject(N100409001) supported by the Fundamental Research Funds for the Central Universities,China
文摘The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion properties of the(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were investigated by X-ray diffraction, scanning electron microscopy, compressive tests and corrosion tests. It has been found that the addition of Ti higher than 4%(mole fraction) causes the formation of many crystalline phases in the alloy. The alloys with 1%-3% Ti display an obvious yield stage on their compressive stress-strain curves. An appropriate addition of Ti can improve the strength and ductility of the alloys. All the alloys have high corrosion resistance in 1 mol/L Na OH solution, and are corroded in 1 mol/L HCl solution. However, the appropriate addition of Ti can significantly improve the corrosion resistance of the alloys in HCl solution.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Natural Science Foundation of Beijing Municipality,China
文摘Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.
基金Project (2010ZDJH10) supported by the Nanjing University of Science and Technology Research Funding, ChinaProject (BK2007213) supported by the Natural Science Foundation of Jiangsu Province, China
文摘The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by differential scanning calorimetry (DSC). The minor-addition of Fe obviously extends the supercooled liquid region ΔTx. The plastic strain of the Cu44Zr48Al7Fe bulk metallic glass is about 1.5%. The microstructures were examined by transmission electron microscopy (TEM). It is found that when 1%-2% Fe (mole fraction) were introduced into the CuZrAl alloy matrix, nanoscale phase separation occurs in the as-prepared Cu44Zr48Al7Fe bulk metallic glass.
基金Project (SWU110046) supported by the Doctorate Foundation of Southwest University,China
文摘Bulk metallic glass(BMG) rods Fe71Mo5-xNbxP12C10B2(x=1,2,3,4 and 5) with diameter of 1 or 2 mm were synthesized by copper mold casting.The effects of Nb substitution for Mo on the structure,thermal and mechanical properties of Fe71Mo5-xNbxP12C10B2 alloys were studied by X-ray diffraction,differential scanning calorimetry and compressive testing.The results show that the substitution of Nb for Mo leads to a decreased glass forming ability,but with plasticity of 1.0%,the fracture strength of Fe71Mo2Nb3P12C10B2 alloy increases up to 4.0 GPa.The improvement of the fracture strength is discussed in terms of the enhancement of atomic bonding nature and the favorite formation of a network-like structure due to the substitution of Nb for Mo.
基金Project(51261021)supported by the National Natural Science Foundation of ChinaProject(KJLD13056)supported by the Science and Technology Landing Plan of Jiangxi Province,China
文摘The corrosion behavior of bulk metallic glasses(BMGs)(Fe41Co7Cr15Mo14C15B6Y2)100-xCrx(x=0,4,8,12,molar fraction,%)was investigated in1mol/L HCl aqueous solution with electrochemical tests.The electrochemical measurements demonstrate that the passive current density of Fe-based amorphous alloy is reduced by about one order of magnitude,and meanwhile,the stability of passive film can be guaranteed by the Cr/Mo molar ratio.The Mott–Schottky(M–S)curves show that the passive film is the densest when the molar ratio of Cr/Mo is between1.37and1.69.X-ray photoelectron spectroscopy(XPS)analysis was performed to clarify chemical states of elements in the passive films.The results show that the corrosion resistance of the alloy is related to the molar ratio of Cr/Mo.The stability of passive film is determined by the synergistic action of Cr and Mo elements.The main component of the passive film is Cr3+oxide.When the potential is greater than0.5V(vs SCE),Mo6+ions play an important role in keeping the stability of the passive film.The appropriate molar ratio of Cr/Mo can reduce the dissolution rate of the passive film.
基金supported by the National Natural Science Foundation of China (Grant No. 51071008,51131002 and 51161130526)
文摘In the present study,high-zirconium ternary Zr-Al-Fe bulk metallic glasses(BMGs) with low Young's modulus and good plasticity were developed.Zr75 Al7.5 Fe17.5 BMG exhibits a low Young's modulus of 70 GPa and high Poisson's ratio of 0.403.Pronounced plasticity was demonstrated under both compression and bending conditions for the BMGs.Furthermore,the alloys show high corrosion resistance in phosphate buffered solution.The combination of desirable mechanical and chemical properties implies potential for biomedical applications.
文摘In this paper, high-zirconium Zr66+2xAl9-x(Ni1/3Cu2/3)25-x (x=0,1,2 at.%) bulk metallic glasses with high strength and large duc- tility were fabricated by copper mould casting. The effects of zirconium content on the glass-forming ability (GFA), thermal properties and mechanical properties were investigated using X-ray diffractometer (XRD), differential scanning calorimeter (DSC), and mechanical testing system in compressive and three-point bending modes, respectively. The high-zirconium BMGs show the critical diameters of 3-5 ram, the supercooled liquid region ranging from 70 K to 99 K, and the yield strength of over 1700 MPa. The Zr70Al7(Ni1/3Cu2/3)23 BMG exhibits a large compressive plastic strain up to 21% and a high notch toughness value of 60.6 MPa m1/2. The increase in Zr content results in the decrease in GFA and thermostability, and in the improvement of plasticity under compressive and three-point bending conditions. The superior plasticity of high-zirconium BMGs is at- tributed to their high Poisson's ratio and small elastic modulus ratioμl/B.