近年来K-SVD字典学习去噪算法因其耗时短、去噪效果好的特点得到广泛关注和应用,但该算法的适用条件为图像的噪声为加性噪声且噪声标准差已知。针对这一情况,先提出一种平滑图像块筛选方法,并将其与奇异值分解(singular value decomposi...近年来K-SVD字典学习去噪算法因其耗时短、去噪效果好的特点得到广泛关注和应用,但该算法的适用条件为图像的噪声为加性噪声且噪声标准差已知。针对这一情况,先提出一种平滑图像块筛选方法,并将其与奇异值分解(singular value decomposition,SVD)相结合实现对图像的噪声标准差估计;再将得到的噪声估计方法与K-SVD字典学习去噪算法结合起来,提出一种具备噪声估计特性的K-SVD字典学习去噪算法。对多种图像的去噪实验结果表明,与Donoho小波软阈值去噪算法、全变分(total variation,TV)去噪算法相比,该算法不仅能够使去噪后图像的峰值信噪比提升1~3 dB,并且能较好地保留图像的细节信息和边缘特征。展开更多
设计图像块特征表示是计算机视觉领域内的基本研究内容,优秀的图像块特征表示能够有效地提高图像分类、对象识别等相关算法的性能.SIFT(scale-invariant feature transform)和HOG(histogram of oriented gradient)是人为设计图像块特征...设计图像块特征表示是计算机视觉领域内的基本研究内容,优秀的图像块特征表示能够有效地提高图像分类、对象识别等相关算法的性能.SIFT(scale-invariant feature transform)和HOG(histogram of oriented gradient)是人为设计图像块特征表示的优秀代表,然而,人为设计图像块特征间的差异往往不能足够理想地反映图像块间的相似性.核描述子(kernel descriptor,简称KD)方法提供了一种新的方式生成图像块特征,在图像块间匹配核函数基础上,应用核主成分分析(kernel principal component analysis,简称KPCA)方法进行特征表示,且在图像分类应用上获得不错的性能.但是,该方法需要利用所有联合基向量去生成核描述子特征,导致算法时间复杂度较高.为了解决这个问题,提出了一种算法生成图像块特征表示,称为有效图像块描述子(efficient patch-level descriptor,简称EPLd).算法建立在不完整Cholesky分解基础上,自动选择少量的标志性图像块以提高算法效率,且利用MMD(maximum mean discrepancy)距离计算图像间的相似性.实验结果表明,该算法在图像/场景分类应用中获得了优秀的性能.展开更多
针对单一冗余字典在稀疏表示图像超分辨率重建结果出现不清晰、伪影以及重建过程编码效率不高、运算时间过长的问题,提出一种基于多字典学习和图像块映射的超分辨率重建方法。该方法在传统稀疏表示的框架下,首先探索局部图像块的梯度结...针对单一冗余字典在稀疏表示图像超分辨率重建结果出现不清晰、伪影以及重建过程编码效率不高、运算时间过长的问题,提出一种基于多字典学习和图像块映射的超分辨率重建方法。该方法在传统稀疏表示的框架下,首先探索局部图像块的梯度结构信息,按梯度角度将训练样本块分类;然后为每个子类样本集学习高低分辨率字典对,再结合最近邻思想应用生成的字典,为每个子类计算从低分辨率块到高分辨率块映射的函数;最后将重建过程简化为输入块和映射函数的乘积,在保证提高重建质量的同时减少了图像重建的时间。实验结果表明,所提算法在视觉效果有较大的提升,同时与锚点邻域回归算法相比,评价参数峰值信噪比(PSNR)平均提高约0.4 d B。展开更多
文摘近年来K-SVD字典学习去噪算法因其耗时短、去噪效果好的特点得到广泛关注和应用,但该算法的适用条件为图像的噪声为加性噪声且噪声标准差已知。针对这一情况,先提出一种平滑图像块筛选方法,并将其与奇异值分解(singular value decomposition,SVD)相结合实现对图像的噪声标准差估计;再将得到的噪声估计方法与K-SVD字典学习去噪算法结合起来,提出一种具备噪声估计特性的K-SVD字典学习去噪算法。对多种图像的去噪实验结果表明,与Donoho小波软阈值去噪算法、全变分(total variation,TV)去噪算法相比,该算法不仅能够使去噪后图像的峰值信噪比提升1~3 dB,并且能较好地保留图像的细节信息和边缘特征。
文摘设计图像块特征表示是计算机视觉领域内的基本研究内容,优秀的图像块特征表示能够有效地提高图像分类、对象识别等相关算法的性能.SIFT(scale-invariant feature transform)和HOG(histogram of oriented gradient)是人为设计图像块特征表示的优秀代表,然而,人为设计图像块特征间的差异往往不能足够理想地反映图像块间的相似性.核描述子(kernel descriptor,简称KD)方法提供了一种新的方式生成图像块特征,在图像块间匹配核函数基础上,应用核主成分分析(kernel principal component analysis,简称KPCA)方法进行特征表示,且在图像分类应用上获得不错的性能.但是,该方法需要利用所有联合基向量去生成核描述子特征,导致算法时间复杂度较高.为了解决这个问题,提出了一种算法生成图像块特征表示,称为有效图像块描述子(efficient patch-level descriptor,简称EPLd).算法建立在不完整Cholesky分解基础上,自动选择少量的标志性图像块以提高算法效率,且利用MMD(maximum mean discrepancy)距离计算图像间的相似性.实验结果表明,该算法在图像/场景分类应用中获得了优秀的性能.
文摘针对单一冗余字典在稀疏表示图像超分辨率重建结果出现不清晰、伪影以及重建过程编码效率不高、运算时间过长的问题,提出一种基于多字典学习和图像块映射的超分辨率重建方法。该方法在传统稀疏表示的框架下,首先探索局部图像块的梯度结构信息,按梯度角度将训练样本块分类;然后为每个子类样本集学习高低分辨率字典对,再结合最近邻思想应用生成的字典,为每个子类计算从低分辨率块到高分辨率块映射的函数;最后将重建过程简化为输入块和映射函数的乘积,在保证提高重建质量的同时减少了图像重建的时间。实验结果表明,所提算法在视觉效果有较大的提升,同时与锚点邻域回归算法相比,评价参数峰值信噪比(PSNR)平均提高约0.4 d B。