We show that two module homomorphisms for groups and Lie algebras established by Xi(2012)can be generalized to the setting of quasi-triangular Hopf algebras.These module homomorphisms played a key role in his proof of...We show that two module homomorphisms for groups and Lie algebras established by Xi(2012)can be generalized to the setting of quasi-triangular Hopf algebras.These module homomorphisms played a key role in his proof of a conjecture of Yau(1998).They will also be useful in the problem of decomposition of tensor products of modules.Additionally,we give another generalization of result of Xi(2012)in terms of Chevalley-Eilenberg complex.展开更多
We study the concept of module twistor for a module over an algebra. This concept provides a unifying framework for various deformed constructions of modules over algebras, such as module R-matrices,(n-factor iterated...We study the concept of module twistor for a module over an algebra. This concept provides a unifying framework for various deformed constructions of modules over algebras, such as module R-matrices,(n-factor iterated) twisted tensor products and L-R-twisted tensor products of algebras. Among the main results,we find the relations among these constructions. Furthermore, we study some properties of module twistors.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 11501546)
文摘We show that two module homomorphisms for groups and Lie algebras established by Xi(2012)can be generalized to the setting of quasi-triangular Hopf algebras.These module homomorphisms played a key role in his proof of a conjecture of Yau(1998).They will also be useful in the problem of decomposition of tensor products of modules.Additionally,we give another generalization of result of Xi(2012)in terms of Chevalley-Eilenberg complex.
基金supported by National Natural Science Foundation of China (Grant Nos. 11201285 and 11371238)the First-class Discipline of Universities in Shanghai
文摘We study the concept of module twistor for a module over an algebra. This concept provides a unifying framework for various deformed constructions of modules over algebras, such as module R-matrices,(n-factor iterated) twisted tensor products and L-R-twisted tensor products of algebras. Among the main results,we find the relations among these constructions. Furthermore, we study some properties of module twistors.