This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the block...This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the blocking strength is identified to determine the filtering range, and the maximum quantization parameter of the image is used to adapt the 1D fuzzy filter. For de-ringing, besides the edge detection, a complementary ringing detection method is proposed to locate the neglected ringing blocks, and the gradient threshold is adopted to adjust the parameter of 2D fuzzy filter. Experiments are performed on the MPEG-4 sequences. Compared with other methods, the proposed one achieves better detail preservation and artifacts removal performance with lower computational cost.展开更多
Due to coarse quantization, block-based discrete cosine transform(BDCT) compression methods usually suffer from visible blocking artifacts at the block boundaries. A novel efficient de-blocking method in DCT domain is...Due to coarse quantization, block-based discrete cosine transform(BDCT) compression methods usually suffer from visible blocking artifacts at the block boundaries. A novel efficient de-blocking method in DCT domain is proposed. A specific criterion for edge detection is given, one-dimensional DCT is applied on each row of the adjacent blocks and the shifted block in smooth region, and the transform coefficients of the shifted block are modified by weighting the average of three coefficients of the block. Mean square difference of slope criterion is used to judge the efficiency of the proposed algorithm. Simulation results show that the new method not only obtains satisfactory image quality, but also maintains high frequency information.展开更多
文摘This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the blocking strength is identified to determine the filtering range, and the maximum quantization parameter of the image is used to adapt the 1D fuzzy filter. For de-ringing, besides the edge detection, a complementary ringing detection method is proposed to locate the neglected ringing blocks, and the gradient threshold is adopted to adjust the parameter of 2D fuzzy filter. Experiments are performed on the MPEG-4 sequences. Compared with other methods, the proposed one achieves better detail preservation and artifacts removal performance with lower computational cost.
基金Science and Technology Project of Guangdong Province(2006A10201003) 2005 Jinan University StartupProject(51205067) Soft Science Project of Guangdong Province(2006B70103011)
文摘Due to coarse quantization, block-based discrete cosine transform(BDCT) compression methods usually suffer from visible blocking artifacts at the block boundaries. A novel efficient de-blocking method in DCT domain is proposed. A specific criterion for edge detection is given, one-dimensional DCT is applied on each row of the adjacent blocks and the shifted block in smooth region, and the transform coefficients of the shifted block are modified by weighting the average of three coefficients of the block. Mean square difference of slope criterion is used to judge the efficiency of the proposed algorithm. Simulation results show that the new method not only obtains satisfactory image quality, but also maintains high frequency information.