针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)...针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)分解与熵权类稀疏的壁画修复方法。首先,采用提出的基于块核范数的RPCA图像分解算法,将壁画图像分解为结构层和纹理层,利用块核范数进行纹理矫正操作,克服了RPCA结构纹理分离不完全的问题。然后,提出熵加权k-means方法对结构层图像进行聚类,构建得到稀疏子类字典,并通过奇异值分解和分裂Bregman迭代优化的类稀疏修复方法,完成结构层图像的重构。最后,利用双三次插值算法实现对纹理层图像的修复,将修复后的结构层和纹理层进行融合,完成破损壁画的修复。通过对真实敦煌壁画数字化修复,实验结果表明,该算法能够有效地保护壁画图像的边缘和纹理等重要特征信息,无论从视觉效果还是从峰值信噪比等定量评价方面,提出的方法修复效果均优于比较算法,且修复执行效率更高。展开更多
The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fu...The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fulfill dynamic demands of information sharing between government agencies.Motivated by blockchain and data mining,a data-driven framework is proposed for IAGIS in this paper.Firstly,the blockchain is used as the core to design the whole framework for monitoring and preventing leakage and abuse of government information,in order to guarantee information security.Secondly,a four-layer architecture is designed for implementing the proposed framework.Thirdly,the classical data mining algorithms PageRank and Apriori are applied to dynamically design smart contracts for information sharing,for the purposed of flexibly adjusting the information sharing strategies according to the practical demands of government agencies for public management and public service.Finally,a case study is presented to illustrate the operation of the proposed framework.展开更多
文摘针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)分解与熵权类稀疏的壁画修复方法。首先,采用提出的基于块核范数的RPCA图像分解算法,将壁画图像分解为结构层和纹理层,利用块核范数进行纹理矫正操作,克服了RPCA结构纹理分离不完全的问题。然后,提出熵加权k-means方法对结构层图像进行聚类,构建得到稀疏子类字典,并通过奇异值分解和分裂Bregman迭代优化的类稀疏修复方法,完成结构层图像的重构。最后,利用双三次插值算法实现对纹理层图像的修复,将修复后的结构层和纹理层进行融合,完成破损壁画的修复。通过对真实敦煌壁画数字化修复,实验结果表明,该算法能够有效地保护壁画图像的边缘和纹理等重要特征信息,无论从视觉效果还是从峰值信噪比等定量评价方面,提出的方法修复效果均优于比较算法,且修复执行效率更高。
基金Supported by the Project of Guangdong Science and Technology Department(2020B010166005)the Post-Doctoral Research Project(Z000158)+2 种基金the Ministry of Education Social Science Fund(22YJ630167)the Fund project of Department of Science and Technology of Guangdong Province(GDK TP2021032500)the Guangdong Philosophy and Social Science(GD22YYJ15).
文摘The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fulfill dynamic demands of information sharing between government agencies.Motivated by blockchain and data mining,a data-driven framework is proposed for IAGIS in this paper.Firstly,the blockchain is used as the core to design the whole framework for monitoring and preventing leakage and abuse of government information,in order to guarantee information security.Secondly,a four-layer architecture is designed for implementing the proposed framework.Thirdly,the classical data mining algorithms PageRank and Apriori are applied to dynamically design smart contracts for information sharing,for the purposed of flexibly adjusting the information sharing strategies according to the practical demands of government agencies for public management and public service.Finally,a case study is presented to illustrate the operation of the proposed framework.