A scheme to design a simultaneous multichannel receiver is proposed to process multichannel signals in parallel, which is achieved by exploiting the attractive characteristics of a fast filter bank( FFB), such as ca...A scheme to design a simultaneous multichannel receiver is proposed to process multichannel signals in parallel, which is achieved by exploiting the attractive characteristics of a fast filter bank( FFB), such as cascaded structure, high frequency selectivity and lowcomputational complexity. Based on the minimization of the objective function, quantified in terms of the total number of multiplications required, subject to prescribed allowable ripples in the passband and stopband, the impulse response coefficients of the prototype filter in each stage are obtained to meet the requirements of the overall specifications for each channel at the receiver side. Simulations and experimental results on the frequency modulation( FM) broadcast mutlichannel signal receiving system with the FM range from88 to 108 MHz, built upon the proposed FFB structure, are performed to verify its performance. Those results indicate that the proposed scheme is efficient in FM audio indexing applications and has a lower computational complexity, which is approximately 66. 4% of the weighted overlap and add( WOLA) filter banks based solution.展开更多
基金The National Natural Science Foundation of China(No.61201173,61271058,61401094)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110092110008)+1 种基金the Natural Science Foundation of Jiangsu Province(No.SBK201140040,BK2011060,BK20140645)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China
文摘A scheme to design a simultaneous multichannel receiver is proposed to process multichannel signals in parallel, which is achieved by exploiting the attractive characteristics of a fast filter bank( FFB), such as cascaded structure, high frequency selectivity and lowcomputational complexity. Based on the minimization of the objective function, quantified in terms of the total number of multiplications required, subject to prescribed allowable ripples in the passband and stopband, the impulse response coefficients of the prototype filter in each stage are obtained to meet the requirements of the overall specifications for each channel at the receiver side. Simulations and experimental results on the frequency modulation( FM) broadcast mutlichannel signal receiving system with the FM range from88 to 108 MHz, built upon the proposed FFB structure, are performed to verify its performance. Those results indicate that the proposed scheme is efficient in FM audio indexing applications and has a lower computational complexity, which is approximately 66. 4% of the weighted overlap and add( WOLA) filter banks based solution.