期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于全卷积神经网络的坝面裂纹检测方法研究 被引量:25
1
作者 陈波 张华 +4 位作者 汪双 王皓冉 刘昭伟 李永龙 谢辉 《水力发电学报》 EI CSCD 北大核心 2020年第7期52-60,共9页
针对常规裂纹检测方法难适用于坝面裂纹检测的问题,提出一种基于全卷积神经网络的裂纹检测方法,主要解决混凝土坝面裂纹的定量化检测问题。该检测方法引入图像预处理与形态学后处理相结合的方式,分别对原始数据和预测结果进行优化,提升... 针对常规裂纹检测方法难适用于坝面裂纹检测的问题,提出一种基于全卷积神经网络的裂纹检测方法,主要解决混凝土坝面裂纹的定量化检测问题。该检测方法引入图像预处理与形态学后处理相结合的方式,分别对原始数据和预测结果进行优化,提升检测精度;并根据坝面数据特点对传统FCN(fully convolutional network)网络进行改进,得到针对性更强的裂纹检测网络C-FCN(crack fully convolutional network),提升对裂纹检测的准确率;结合成像原理提取定量化信息,避免繁杂的相机标定工作,更加高效客观。利用该检测方法对实际工程进行实测,像素准确率、召回率和交并比分别达到75.13%、86.84%和60.15%,相比传统FCN网络,三项指标分别提升5.61%、16.56%、13.22%,同时定量化误差小于5%,裂纹平均宽度均不超过5 mm。该检测方法能够实现对坝面裂纹的精准识别和定量,为坝面后期风险评估和维护提供有力的数据支撑,具有显著的工程意义。 展开更多
关键词 深度学习 全卷积神经网络 坝面裂纹检测 双边滤波 定量化检测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部