With the scale extending of mining, the landslide disaster in the earth’s surface will become more and more serious, and these landslide disasters are being threatened to the sustainable safe mining of the undergroun...With the scale extending of mining, the landslide disaster in the earth’s surface will become more and more serious, and these landslide disasters are being threatened to the sustainable safe mining of the underground mine and the open-pit mine. Based on the theory that sliding force is greater than the shear resistance (resisting force) at the potential slip surface is the necessary and sufficient condition to occur the landslide as the sliding criterion, the principle and method for sliding force remote monitoring is presented, and the functional relationship between the human mechanical quantity and the natural sliding force is derived, hereby, the natural sliding force can be calculated according to the human mechanical quantity. Based on above principle and method, a new system of landslide remote monitoring is designed and 53 systems are installed on the landslide body in the Luoshan mining area, which make up the landslide remote monitoring network. According to the results of field test around 8 months, monitoring curves between sliding force and time are obtained, which can describe and forecast the develop trend of landslide. According to above analysis, the results show that this system has some following advantages: (1) real-time monitoring; (2) remote intelligent transmission; (3) landslides early warning.展开更多
Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luosha...Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.展开更多
Landslides and debris flows are typical geo-hazards which occur in hilly or mountainous regions. Debris flows may result from landslides. Geotechnical instrumentation plays an important role in monitoring and warning ...Landslides and debris flows are typical geo-hazards which occur in hilly or mountainous regions. Debris flows may result from landslides. Geotechnical instrumentation plays an important role in monitoring and warning of landslides and resulted debris flows. Traditional technologies for monitoring landslides and debris flows have certain limitations. The new optical fiber sensors presented in this paper can overcome those limitations. This paper presents two new optical fiber sensor systems: one is the Fiber Bragg Grating (FBG)-based in-place inclinometer for monitoring landslides and the other is the FBG-based column-net system for monitoring debris flows. This paper presents the calibration results of FBG-based in-place inclinometers in laboratory. It is found that the calibration results are in good agreement with theoretical results. Both the FBG-based in-place inclinometers and the FBG-based column-net system have been installed at a site in Weijiagou valley, Beichuan County, Sichuan Province of China. Some preliminary results have been obtained and reported in the paper. The advantages of the FBG monitoring systems and their potential applications are also presented.展开更多
Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at hig...Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at high banks of the Moskva River. Recently the landslide activation occurred. Normal functioning of city infrastructure and implementation of effective slope protection measures require special landslide monitoring. Mechanical-mathematical model of high viscous fluid was applied for the landslide-prone slopes modeling. Equation of continuityand an approximatedNavier-Stockes equation f or slow motions in a thin layer were used. The results of modelling give possibility to define the landslide section with upmost velocity that should be monitored in the first place. Some important parameters used for numerical modelling can be defined from monitoring data.展开更多
Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for la...Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.展开更多
基金Project 2006CB202200 supported by the National Basic Research Program of China
文摘With the scale extending of mining, the landslide disaster in the earth’s surface will become more and more serious, and these landslide disasters are being threatened to the sustainable safe mining of the underground mine and the open-pit mine. Based on the theory that sliding force is greater than the shear resistance (resisting force) at the potential slip surface is the necessary and sufficient condition to occur the landslide as the sliding criterion, the principle and method for sliding force remote monitoring is presented, and the functional relationship between the human mechanical quantity and the natural sliding force is derived, hereby, the natural sliding force can be calculated according to the human mechanical quantity. Based on above principle and method, a new system of landslide remote monitoring is designed and 53 systems are installed on the landslide body in the Luoshan mining area, which make up the landslide remote monitoring network. According to the results of field test around 8 months, monitoring curves between sliding force and time are obtained, which can describe and forecast the develop trend of landslide. According to above analysis, the results show that this system has some following advantages: (1) real-time monitoring; (2) remote intelligent transmission; (3) landslides early warning.
文摘Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.
基金supported by research grants of The Hong Kong Polytechnic University (Grant Nos. G-YE54 and 1-BB7U)supported by the State Key Fundamental Research (973) program project (Grant No. 2008CB425802)supported by a project entitled "Analysis of Geological and Mechanics Reasons Causing Damage of Bridge Structures during Wenchuan Earthquake and Recommendations for Reconstruction" (A/C No. 85G0)
文摘Landslides and debris flows are typical geo-hazards which occur in hilly or mountainous regions. Debris flows may result from landslides. Geotechnical instrumentation plays an important role in monitoring and warning of landslides and resulted debris flows. Traditional technologies for monitoring landslides and debris flows have certain limitations. The new optical fiber sensors presented in this paper can overcome those limitations. This paper presents two new optical fiber sensor systems: one is the Fiber Bragg Grating (FBG)-based in-place inclinometer for monitoring landslides and the other is the FBG-based column-net system for monitoring debris flows. This paper presents the calibration results of FBG-based in-place inclinometers in laboratory. It is found that the calibration results are in good agreement with theoretical results. Both the FBG-based in-place inclinometers and the FBG-based column-net system have been installed at a site in Weijiagou valley, Beichuan County, Sichuan Province of China. Some preliminary results have been obtained and reported in the paper. The advantages of the FBG monitoring systems and their potential applications are also presented.
文摘Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at high banks of the Moskva River. Recently the landslide activation occurred. Normal functioning of city infrastructure and implementation of effective slope protection measures require special landslide monitoring. Mechanical-mathematical model of high viscous fluid was applied for the landslide-prone slopes modeling. Equation of continuityand an approximatedNavier-Stockes equation f or slow motions in a thin layer were used. The results of modelling give possibility to define the landslide section with upmost velocity that should be monitored in the first place. Some important parameters used for numerical modelling can be defined from monitoring data.
基金financially supported by the State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection (Chengdu University of Technology) (Grant No. SKLGP2013Z007)the National Natural Science Foundation of China (Grant No. 41302242)
文摘Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.