Tendons vertically moor Tension-Leg Platforms (TLPs), thus, a deep understanding of physical tendon stresses requires the determination of the total axial deformation of the tendons, which is a combination of the he...Tendons vertically moor Tension-Leg Platforms (TLPs), thus, a deep understanding of physical tendon stresses requires the determination of the total axial deformation of the tendons, which is a combination of the heave, pitch, and surging responses. The vertical motion of the lateral sides of the TLP is coupled with surge and constitutes a portion of the pitch motion. Tendons are connected to the sides of the TLP; hence, the total displacement of the lateral sides is related to the total deformation of the tendons and the total axial stress. Therefore, investigating the total vertical response at the sides of the TLP is essential. The coupling between various degrees of freedom is not considered in the Response Amplitude Operator (RAO). Therefore, in frequency domain analysis, the estimated vertical RAO is incomplete. Also, in the time domain, only the heave motion at the center of TLP is typically studied; this problem needs to be addressed. In this paper, we investigate the portion of the pitch motion in the vertical response at the sides of the TLP in both the frequency and time domains. Numerical results demonstrate a significant effect of the pitch motion in the vertical motion of the edges of the TLP in some period ranges.展开更多
In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performanc...In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performance of the system depends on rigid body dynamics, structural dynamics, servo control loops, stabilization control algorithm, sensor fusion algorithm and sensory feedback such as from the IMU (inertial measurement unit). In the case that the response bandwidth of the overall system is high enough, the same hardware can also achieve active vibration isolation. All of these design aspects are investigated in the paper via numerical models and with their experimental verification.展开更多
Limestone breccias are a common phenomenon in the Cambrian successions worldwide. They bear important geological im- plications that have attracted geologists for several decades. There are, however, still controversi...Limestone breccias are a common phenomenon in the Cambrian successions worldwide. They bear important geological im- plications that have attracted geologists for several decades. There are, however, still controversies on their origins, especially those of the breccias with abundant vertically orientated clasts. The Furongian (upper Cambrian) Chaomidian Formation of the North China Platform contains numerous levels of limestone breccias and conglomerates that provide an excellent example to look into their formative processes. These breccias and conglomerates have been the focus of study and discussion since the 1980s, but yet there is still no consensus with respect to their geneses. Recently, Van Loon and others argued that the vertically orientated clasts of the breccias developed by a number of simultaneous "fountains" on the paleo-seafloor; the "fountains" formed by upward-directed fluidized flows originated from the sediment underlying the brecciated limestones. While the novel "fountain" hypothesis is not impossible, based on field evidences and theoretical considerations, however, it is most likely that the vertically orientated clasts resulted from their re-orientation by gillaceous sediment that was interbedded with brecciated limestone took place under shallow burial. upward flow of thixotropically liquidized, uncemented ar- fragments. Besides, the deformation processes most likely展开更多
文摘Tendons vertically moor Tension-Leg Platforms (TLPs), thus, a deep understanding of physical tendon stresses requires the determination of the total axial deformation of the tendons, which is a combination of the heave, pitch, and surging responses. The vertical motion of the lateral sides of the TLP is coupled with surge and constitutes a portion of the pitch motion. Tendons are connected to the sides of the TLP; hence, the total displacement of the lateral sides is related to the total deformation of the tendons and the total axial stress. Therefore, investigating the total vertical response at the sides of the TLP is essential. The coupling between various degrees of freedom is not considered in the Response Amplitude Operator (RAO). Therefore, in frequency domain analysis, the estimated vertical RAO is incomplete. Also, in the time domain, only the heave motion at the center of TLP is typically studied; this problem needs to be addressed. In this paper, we investigate the portion of the pitch motion in the vertical response at the sides of the TLP in both the frequency and time domains. Numerical results demonstrate a significant effect of the pitch motion in the vertical motion of the edges of the TLP in some period ranges.
文摘In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performance of the system depends on rigid body dynamics, structural dynamics, servo control loops, stabilization control algorithm, sensor fusion algorithm and sensory feedback such as from the IMU (inertial measurement unit). In the case that the response bandwidth of the overall system is high enough, the same hardware can also achieve active vibration isolation. All of these design aspects are investigated in the paper via numerical models and with their experimental verification.
基金supported by the National Research Foundation of Korea(Grant No.2008-0093871)the National Natural Science Foundation of China(Grant Nos.41302077,41290260)
文摘Limestone breccias are a common phenomenon in the Cambrian successions worldwide. They bear important geological im- plications that have attracted geologists for several decades. There are, however, still controversies on their origins, especially those of the breccias with abundant vertically orientated clasts. The Furongian (upper Cambrian) Chaomidian Formation of the North China Platform contains numerous levels of limestone breccias and conglomerates that provide an excellent example to look into their formative processes. These breccias and conglomerates have been the focus of study and discussion since the 1980s, but yet there is still no consensus with respect to their geneses. Recently, Van Loon and others argued that the vertically orientated clasts of the breccias developed by a number of simultaneous "fountains" on the paleo-seafloor; the "fountains" formed by upward-directed fluidized flows originated from the sediment underlying the brecciated limestones. While the novel "fountain" hypothesis is not impossible, based on field evidences and theoretical considerations, however, it is most likely that the vertically orientated clasts resulted from their re-orientation by gillaceous sediment that was interbedded with brecciated limestone took place under shallow burial. upward flow of thixotropically liquidized, uncemented ar- fragments. Besides, the deformation processes most likely