In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical pr...In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.展开更多
The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vert...The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.展开更多
Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liqu...Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liquid holdup of ZNLF is conducted in a vertical ten-meter tube with diameter of 76 mm, both for Newtonian and nonNewtonian fluids. The gas phase is air. The Newtonian fluid is water and the non-Newtonian fluids are water-based guar gel solutions. The correlations developed for predicting liquid holdup on the basis of Lockhart-Martinelli parameter are not suitable to ZNLF. A constitutive correlation for the liquid holdup of vertical ZNLF was put forward by using the mass balance. It is found that the liquid holdup in ZNLF is dependent on both the gas flow rate and the flow distribution coefficient.展开更多
文摘In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.
文摘The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.
文摘Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liquid holdup of ZNLF is conducted in a vertical ten-meter tube with diameter of 76 mm, both for Newtonian and nonNewtonian fluids. The gas phase is air. The Newtonian fluid is water and the non-Newtonian fluids are water-based guar gel solutions. The correlations developed for predicting liquid holdup on the basis of Lockhart-Martinelli parameter are not suitable to ZNLF. A constitutive correlation for the liquid holdup of vertical ZNLF was put forward by using the mass balance. It is found that the liquid holdup in ZNLF is dependent on both the gas flow rate and the flow distribution coefficient.