Heavy precipitation events occur often over the western Sichuan Basin in summer, near the transition zone between the Sichuan Basin and the steep terrain of the Tibetan Plateau. One such event -- a heavy precipitation...Heavy precipitation events occur often over the western Sichuan Basin in summer, near the transition zone between the Sichuan Basin and the steep terrain of the Tibetan Plateau. One such event -- a heavy precipitation process that occurred on 18-20 August 2010, with clear nocturnal peaks -- is chosen as a case to tentatively explore how the convection associated with convectivescale precipitation is initiated and propagated. By utilizing the vertical momentum equation from the viewpoint of separating perturbation pressure into dynamic and thermal parts, it is demonstrated that the vertical momentum is induced by the imbalance of several forces, including the dynamic/buoyant part of the perturbation pressure gradient force and the buoyancy force, with the latter dominating during the nocturnal-peak period. Although a negative value of the dynamic perturbation pressure gradient force partly offsets the positive buoyant forcing inside the strong updraft, the pattern of vertical motion tendency is largely attributable to its buoyancy because of its larger magnitude. Relative to the buoyancy component, the dynamic part of the vertical perturbation pressure gradient is also examined, revealing a smaller order of magnitude. Thus, it is the thermal effect that should be responsible for the initiation and propagation of convection. As for the convective-scale precipitation, it always presents a trailing morphology relative to the strong leading-side updraft. Furthermore, overlapping strong signals of vertical motion and its tendency point towards strong precipitation in the future.展开更多
The flow of a freely falling liquid film of low Reynolds number down a vertical long periodic sine-shaped wavy plate of small corrugations is researched theoretically. A model based on perturbation method and power se...The flow of a freely falling liquid film of low Reynolds number down a vertical long periodic sine-shaped wavy plate of small corrugations is researched theoretically. A model based on perturbation method and power series is presented. A stream function is introduced into the governing equations and two sets of equations describing the film flow separately at zeroth and first order are developed. The zeroth order equation is solved directly. The first order equations is solved at the leading approximation. Effect of parameters Re, M, λ and ε on the free surface wave of film is discussed.展开更多
An approximate research on the flow of a two dimensional, steady laminar liquid film along a vertical, long periodic wavy wall is conducted based on boundary layer integration. An ordinary equation about the film evol...An approximate research on the flow of a two dimensional, steady laminar liquid film along a vertical, long periodic wavy wall is conducted based on boundary layer integration. An ordinary equation about the film evolution is derived. By analyzing the integral equation of the hydrodynamic boundary layer under different Reynolds number domains, the flow characteristics are studied preliminarily. Influences of wall waviness, flow rate on the film development are discussed.展开更多
In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were develop...In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m) and a large area(with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results accord well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.展开更多
The quartz fabric variation and the operation of slip systems were governed by the deformation flow. A new concept named quartz fabric slip flow pattern is to be considered thourgh this relation. On the other hand, st...The quartz fabric variation and the operation of slip systems were governed by the deformation flow. A new concept named quartz fabric slip flow pattern is to be considered thourgh this relation. On the other hand, strain path, quartz fabric variation and strain fabric development are inter related events which controlled by the deformation flow pattern. These events and related structures were analyzed in the Kazdag (IDA) stack antiform. The quartz fabric variation and the strain path analysis reveal mainly three distinct tectonic stages. These are initial vertical extrusion tectonic and following horizontal spreading tectonics. The beginning stage vertical extrusion represented by the quartz Y maxima fabric in rounded pattern and constructional strain and lengthening strain facies. The latest stage of the vertical extrusion also represented by the quartz fabric, constructional strain but proximating to plane strain and lengthening-widening strain facies. The vertical extrusions governed by the steeply dipping reverse faulting at the initial stage and then fallowed by the gently dipping thrusting at the latest stage. The flattening deformation was developed during the horizontal spreading stage. Typical incomplete single girdle quartz fabric, flattening type oblate strain and thinning--widening strain facies are characteristic features of the nappe tectonics.展开更多
A cross-flow wind turbine near a structure was tested for the performance. The results showed that the performance of a cross-flow wind turbine near a structure was up to 30% higher than the one without a structure. I...A cross-flow wind turbine near a structure was tested for the performance. The results showed that the performance of a cross-flow wind turbine near a structure was up to 30% higher than the one without a structure. In addition, we tried to get higher performance of a cross-flow wind turbine by using an Inlet Guide Structure and a Flow Deflector. An Inlet Guide Structure was placed on the edge of a structure and a Flow Deflector was set near a cross-flow wind turbine and can improve ambient wind environments of the wind turbine, the maximum power coefficients were about 15 to 40% higher and the tip speed ratio range showing the high power coefficient was wide and the positive gradients were steep apparently.展开更多
The visualization experiments on HFC R410A condensation in a vertical rectangular channel (14.34mm hydraulic diameter, 160mm length) were investigated. The flow patterns and heat transfer coefficients of condensatio...The visualization experiments on HFC R410A condensation in a vertical rectangular channel (14.34mm hydraulic diameter, 160mm length) were investigated. The flow patterns and heat transfer coefficients of condensation in the inlet region were presented in this paper. Better heat transfer performance can be obtained in the inlet region, and flow regime transition in other regions of the channel was also observed. Condensation experiments were carried out at different mass fluxes ( from 1.6 kg/h to 5.2 kg/h) and at saturation temperature 28~ C. It was found that the flow patterns were mainly dominated by gravity at low mass fluxes. The effects of interfacial shear stress on condensate fluctuation are significant for the film condensation at higher mass flux in vertical flow, and con- sequently, the condensation heat transfer coefficient increases with the mass flux in the experimental conditions, The drop formation and growth process of condensation were also observed at considerably low refrigerant vapor flow rate.展开更多
Transport and diffusion caused by coastal waves have different characteristics from those induced by flows. Through solving the vertical diffusion equation by an analytic method, this paper infers a theoretical formul...Transport and diffusion caused by coastal waves have different characteristics from those induced by flows. Through solving the vertical diffusion equation by an analytic method, this paper infers a theoretical formula of dispersion coefficient under the combined action of current and waves. It divides the general dispersion coefficient into six parts, including coefficients due to tidal current, Stokes drift, wave oscillation and interaction among them. It draws a conclusion that the contribution of dispersive effect induced by coastal waves is mainly produced by Stokes drift, while the contributions to time-averaged dispersion coefficient due to wave orbital motion and interaction between current and waves are very small. The results without tidal current are in agreement with the numerical and experimental results, which proves the correctness of the theoretical derivation. This paper introduces the variation characteristics of both the time-averaged and oscillating dispersion coefficients versus relative water depth, and demonstrates the physical implications of the oscillating mixing coefficient due to waves. We also apply the results to the costal vertical circulation and give its characteristics compared to Stokes drift.展开更多
基金supported by the National Department Public Benefit Research Foundation[grant number GYHY201406003]the Open Research Fund Program of the Plateau Atmosphere and Environment Key Laboratory of Sichuan Province[grant number PAEKL-2015-K3]+2 种基金the National Natural Science Foundation of China[grant numbers 413750544157506441375052]
文摘Heavy precipitation events occur often over the western Sichuan Basin in summer, near the transition zone between the Sichuan Basin and the steep terrain of the Tibetan Plateau. One such event -- a heavy precipitation process that occurred on 18-20 August 2010, with clear nocturnal peaks -- is chosen as a case to tentatively explore how the convection associated with convectivescale precipitation is initiated and propagated. By utilizing the vertical momentum equation from the viewpoint of separating perturbation pressure into dynamic and thermal parts, it is demonstrated that the vertical momentum is induced by the imbalance of several forces, including the dynamic/buoyant part of the perturbation pressure gradient force and the buoyancy force, with the latter dominating during the nocturnal-peak period. Although a negative value of the dynamic perturbation pressure gradient force partly offsets the positive buoyant forcing inside the strong updraft, the pattern of vertical motion tendency is largely attributable to its buoyancy because of its larger magnitude. Relative to the buoyancy component, the dynamic part of the vertical perturbation pressure gradient is also examined, revealing a smaller order of magnitude. Thus, it is the thermal effect that should be responsible for the initiation and propagation of convection. As for the convective-scale precipitation, it always presents a trailing morphology relative to the strong leading-side updraft. Furthermore, overlapping strong signals of vertical motion and its tendency point towards strong precipitation in the future.
基金Acknowledgement: This work is supported by Natural Science Foundation of Tianjin of China (No. 07JCYBJC01300).
文摘The flow of a freely falling liquid film of low Reynolds number down a vertical long periodic sine-shaped wavy plate of small corrugations is researched theoretically. A model based on perturbation method and power series is presented. A stream function is introduced into the governing equations and two sets of equations describing the film flow separately at zeroth and first order are developed. The zeroth order equation is solved directly. The first order equations is solved at the leading approximation. Effect of parameters Re, M, λ and ε on the free surface wave of film is discussed.
文摘An approximate research on the flow of a two dimensional, steady laminar liquid film along a vertical, long periodic wavy wall is conducted based on boundary layer integration. An ordinary equation about the film evolution is derived. By analyzing the integral equation of the hydrodynamic boundary layer under different Reynolds number domains, the flow characteristics are studied preliminarily. Influences of wall waviness, flow rate on the film development are discussed.
基金Project(50808083) supported by the National Natural Science Foundation of China
文摘In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m) and a large area(with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results accord well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.
文摘The quartz fabric variation and the operation of slip systems were governed by the deformation flow. A new concept named quartz fabric slip flow pattern is to be considered thourgh this relation. On the other hand, strain path, quartz fabric variation and strain fabric development are inter related events which controlled by the deformation flow pattern. These events and related structures were analyzed in the Kazdag (IDA) stack antiform. The quartz fabric variation and the strain path analysis reveal mainly three distinct tectonic stages. These are initial vertical extrusion tectonic and following horizontal spreading tectonics. The beginning stage vertical extrusion represented by the quartz Y maxima fabric in rounded pattern and constructional strain and lengthening strain facies. The latest stage of the vertical extrusion also represented by the quartz fabric, constructional strain but proximating to plane strain and lengthening-widening strain facies. The vertical extrusions governed by the steeply dipping reverse faulting at the initial stage and then fallowed by the gently dipping thrusting at the latest stage. The flattening deformation was developed during the horizontal spreading stage. Typical incomplete single girdle quartz fabric, flattening type oblate strain and thinning--widening strain facies are characteristic features of the nappe tectonics.
文摘A cross-flow wind turbine near a structure was tested for the performance. The results showed that the performance of a cross-flow wind turbine near a structure was up to 30% higher than the one without a structure. In addition, we tried to get higher performance of a cross-flow wind turbine by using an Inlet Guide Structure and a Flow Deflector. An Inlet Guide Structure was placed on the edge of a structure and a Flow Deflector was set near a cross-flow wind turbine and can improve ambient wind environments of the wind turbine, the maximum power coefficients were about 15 to 40% higher and the tip speed ratio range showing the high power coefficient was wide and the positive gradients were steep apparently.
基金supported by National Natural Science Foundation of China(No.51176008)National Key Technology R&D Program(2012BAB12B02)
文摘The visualization experiments on HFC R410A condensation in a vertical rectangular channel (14.34mm hydraulic diameter, 160mm length) were investigated. The flow patterns and heat transfer coefficients of condensation in the inlet region were presented in this paper. Better heat transfer performance can be obtained in the inlet region, and flow regime transition in other regions of the channel was also observed. Condensation experiments were carried out at different mass fluxes ( from 1.6 kg/h to 5.2 kg/h) and at saturation temperature 28~ C. It was found that the flow patterns were mainly dominated by gravity at low mass fluxes. The effects of interfacial shear stress on condensate fluctuation are significant for the film condensation at higher mass flux in vertical flow, and con- sequently, the condensation heat transfer coefficient increases with the mass flux in the experimental conditions, The drop formation and growth process of condensation were also observed at considerably low refrigerant vapor flow rate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10672034, 51079024)the Funds for Creative Re-search Groups of China (Grant No. 50921001)
文摘Transport and diffusion caused by coastal waves have different characteristics from those induced by flows. Through solving the vertical diffusion equation by an analytic method, this paper infers a theoretical formula of dispersion coefficient under the combined action of current and waves. It divides the general dispersion coefficient into six parts, including coefficients due to tidal current, Stokes drift, wave oscillation and interaction among them. It draws a conclusion that the contribution of dispersive effect induced by coastal waves is mainly produced by Stokes drift, while the contributions to time-averaged dispersion coefficient due to wave orbital motion and interaction between current and waves are very small. The results without tidal current are in agreement with the numerical and experimental results, which proves the correctness of the theoretical derivation. This paper introduces the variation characteristics of both the time-averaged and oscillating dispersion coefficients versus relative water depth, and demonstrates the physical implications of the oscillating mixing coefficient due to waves. We also apply the results to the costal vertical circulation and give its characteristics compared to Stokes drift.