A new electromagnetic suspension model using a combination of high temperature superconductors (HTS) and copper conductors is proposed in this paper. A feasibility study showed that the magnets of our model can genera...A new electromagnetic suspension model using a combination of high temperature superconductors (HTS) and copper conductors is proposed in this paper. A feasibility study showed that the magnets of our model can generate the 250 kg vertical suspension force. Three dimensional FEM and Design Sensitivity Analysis using the levitation gap length and cross sectional dimensions of the HTS magnets as design parameters were conducted to obtain the optimal shape of the cross section and the configuration of the HTS magnet. It was found that the gap length when optimized HTS magnet was used was much larger than that when copper conductor magnet was used, while the HTS coil volume was minimum, and the perpendicular field along the outer surface of the HTS coil was less than 0.12 T.展开更多
We show that self-assembled vertically aligned gold nanorod (VA-GNRs) superlattices can serve as probes or substrates for ultra-high sensitive detection of various molecules. D-glucose and 2,4,6-trinitrotoluene (TN...We show that self-assembled vertically aligned gold nanorod (VA-GNRs) superlattices can serve as probes or substrates for ultra-high sensitive detection of various molecules. D-glucose and 2,4,6-trinitrotoluene (TNT) have been chosen as model systems due to their very low Raman cross-sections (5.6× 10-30 cm2.molecule-1.sr-1 for D-glucose and 4.9 × 10-31 cm2.molecule-1.sr-1 for TNT) to show that the VA-GNR superlattice assembly offers as low as yoctomole sensitivity. Our experiment on mixed samples of bovine serum albumin (BSA) and D-glucose solutions demonstrate sensitivity for the latter, and the possible extension to real samples. Self-assembled superlattices of VA-GNRs were achieved on a silicon wafer by depositing a drop of solvent containing the GNRs and subsequent solvent evaporation in ambient conditions. An additional advantage of the VA-GNR monolayers is their extremely high reproducible morphology accompanied by ultrahigh sensitivity which will be useful in many fields where a very small amount of analyte is available. Moreover the assembly can be reused a number of times after removing the already present molecules. The method of obtaining VA-GNRs is simple, inexpensive and reproducible. With the help of simulations of monolayers and multilayers it has been shown that superlattices can achieve better sensitivity than monolaver assembly of VA-GNRs.展开更多
基金Project (No. 50477030) supported by the National Natural Science Foundation of China
文摘A new electromagnetic suspension model using a combination of high temperature superconductors (HTS) and copper conductors is proposed in this paper. A feasibility study showed that the magnets of our model can generate the 250 kg vertical suspension force. Three dimensional FEM and Design Sensitivity Analysis using the levitation gap length and cross sectional dimensions of the HTS magnets as design parameters were conducted to obtain the optimal shape of the cross section and the configuration of the HTS magnet. It was found that the gap length when optimized HTS magnet was used was much larger than that when copper conductor magnet was used, while the HTS coil volume was minimum, and the perpendicular field along the outer surface of the HTS coil was less than 0.12 T.
文摘We show that self-assembled vertically aligned gold nanorod (VA-GNRs) superlattices can serve as probes or substrates for ultra-high sensitive detection of various molecules. D-glucose and 2,4,6-trinitrotoluene (TNT) have been chosen as model systems due to their very low Raman cross-sections (5.6× 10-30 cm2.molecule-1.sr-1 for D-glucose and 4.9 × 10-31 cm2.molecule-1.sr-1 for TNT) to show that the VA-GNR superlattice assembly offers as low as yoctomole sensitivity. Our experiment on mixed samples of bovine serum albumin (BSA) and D-glucose solutions demonstrate sensitivity for the latter, and the possible extension to real samples. Self-assembled superlattices of VA-GNRs were achieved on a silicon wafer by depositing a drop of solvent containing the GNRs and subsequent solvent evaporation in ambient conditions. An additional advantage of the VA-GNR monolayers is their extremely high reproducible morphology accompanied by ultrahigh sensitivity which will be useful in many fields where a very small amount of analyte is available. Moreover the assembly can be reused a number of times after removing the already present molecules. The method of obtaining VA-GNRs is simple, inexpensive and reproducible. With the help of simulations of monolayers and multilayers it has been shown that superlattices can achieve better sensitivity than monolaver assembly of VA-GNRs.