文摘设 E^n 中 n 维单形(?)={A_1,A_2,…,A_(n+1)}的顶点集为{A_1,A_2,…,A_(n+1)},有向体积为 V(?),以{A_1,A_(i-1),A_(i+1),…A_n)为顶点集的 n-1维单形(?)称为(?)的“侧面”(下文中(?)所在的 n-1维超平面也记为(?)),“侧面”(?)的 n-1维体积记为(?).自 E^n 中任意一点 M 向超平面(?),(?),…,(?)作垂线,垂足分别为 H_1,H_2,…,H_(n+1),则称顶点集是{H_1,H_2,…,H_(n+1)}的单形(?)_M 为 M 关于(?)的垂足单形,其 n