期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
沈阳市老虎冲垃圾场渗沥液扩容项目设计 被引量:1
1
作者 刘一夫 陈刚 +3 位作者 靳治国 徐创 石欢 闫佳璐 《给水排水》 CSCD 北大核心 2020年第10期42-44,71,共4页
根据老虎冲垃圾场渗沥液扩容项目具有污染物浓度高、占地面积小、建设时间少、服务周期短等特点,渗沥液处理设计采用高负荷膜生物反应器(CJMBR)—膜深度处理工艺,在提高系统抗负荷冲击能力的同时,节约项目占地面积,浓缩液处理采用DTRO... 根据老虎冲垃圾场渗沥液扩容项目具有污染物浓度高、占地面积小、建设时间少、服务周期短等特点,渗沥液处理设计采用高负荷膜生物反应器(CJMBR)—膜深度处理工艺,在提高系统抗负荷冲击能力的同时,节约项目占地面积,浓缩液处理采用DTRO—低温蒸发全量处理工艺,有效控制浓缩液产生量的同时,利用低能耗技术实现全量化处理。设计出水标准执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。 展开更多
关键词 高负荷膜生物反应器(CJMBR) 低温蒸发 全量处理 垃圾场渗沥液
下载PDF
“WT-FG”生物技术有效的治理了高浓度工业污水、城市污水、污染河流和垃圾场渗沥液 被引量:1
2
作者 何应奎 《中国环保产业》 2001年第2期36-39,共4页
关键词 污水处理 “WT-FG”生物技术 工业污水 城市污水 垃圾场渗沥液
下载PDF
Prediction of Leachate Generation in a Landfill Using Artificial Neural Networks
3
作者 Samin Tohru Furuichi +3 位作者 Kiasei Ishhi Enri Damanhuri Suprihanto Notodarmodjo Kuntjoro Adji Sidarta 《Journal of Environmental Science and Engineering(B)》 2012年第11期1233-1238,共6页
One of the problems encountered in the operation of a leachate treatment in a landfill is the quantity of the fluctuating leachate. Therefore, information on the precise prediction about the quantity of leachate produ... One of the problems encountered in the operation of a leachate treatment in a landfill is the quantity of the fluctuating leachate. Therefore, information on the precise prediction about the quantity of leachate produced in a landfill is required. This information can be obtained by using an ANN (artificial neural networks) model. In this study, a prediction on a leachate generation for a period of 15 days was made. The input for the ANN model consists of data such as rainfall, temperature, humidity, duration of solar radiation, and the landfill characteristics, while the output is the leachate landfills production in Minamiashigara, Japan. The ANN algorithm uses a BP (back propagation) with LM (Levenberg-Marquadrt) training type. By using the input-output data pairs, the training of ANN model was conducted in order to obtain the values of the weights that describe the relationship between the input-output data. Furthermore, with the trained ANN model, the prediction of leachate generation for a period of 15 days was made. The study result shows that the prediction accuracy ofleachate generation of ANN-C model, with a correlation coefficient (r) of 0.924, is quite good. Thus, the prediction of leachate generation using artificial neural network model can be recommended for predicting leachate generation in the future. In this study, a prediction on a leachate generation for a period of 15 days was made. The quantity of leachate generation in a landfill can be obtained by using ANN for future periods. By entering data for future periods (t +1) in ANN models, the leachate generation for the period (t +1) can be predicted. 展开更多
关键词 Artificial neural network BACK-PROPAGATION LEACHATE neurons landfills.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部