Soil respiration from decomposing aboveground litter is a major component of the terrestrial carbon cycle. However, variations in the contribution of aboveground litter to the total soil respiration for stands of vary...Soil respiration from decomposing aboveground litter is a major component of the terrestrial carbon cycle. However, variations in the contribution of aboveground litter to the total soil respiration for stands of varying ages are poorly understood. To assess soil respiration induced by aboveground litter, treatments of litter and no litter were applied to 5-, l0-, and 20-year-old stands of Populus davidiana Dode in the sandstorm source area of Beijing-Tianjin, equations were applied to China. Optimal nonlinear model the combined effects of soil temperature and soil water content on soil respiration. Results showed that the monthly average contribution of aboveground litter to total soil respiration were 18.46% ± 4.63%, 16.64% ± 9.31%, and 22.37% ± 8.17% for 5-, 10-, and ao-year-old stands, respectively. The relatively high contribution in 5- and 20-year-old stands could be attributed to easily decomposition products and high accumulated litter, resoectivelv. Also. it fluctuated monthly for all stand ages due to substrate availability caused by phenology and environmental factors. Litter removal significantly decreased soil respiration and soil water content for all stand ages (P 〈 0.05) but not soil temperature (P 〉 0.05). Variations of soil respiration could be explained by soil temperature at 5-cm depth using an exponential equation and by soil water content at lo-cm depth using a quadratic equation, whereas soil respiration was better modeled using the combined parameters of soil temperature and soil water content than with either soil temperature or soil water content alone. Temperature sensitivity (Q10) increased with stand age in both the litter and the no litter treatments. Considering the effects of aboveground litter, this study provides insights for predicting future soil carbon fluxes and for accurately assessing soil carbon budgets.展开更多
The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, an...The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, and decrement of garbage were evaluated through experiments. Fermentation were carried out in an incubator at 5, 25, 37 and 50 ℃. The latic acid produced was maximum at initial pH 6.0 and 37 ℃, i.e. 38 g/L with a yield of 0.23 g/gVS. It is concluded from the experimental results that temperature has quite a considerable effect on the production of lactic acid; lactic acid concentration increases with temperature until 37 ℃, and production rate of lactic acid drops at 50 ℃; the optimal fermentation is 37 ℃. This study shows that production of lactic acid from kitchen garbage is feasible and reduction of garbage can be realized.展开更多
The experiment was conducted to treat the leachate from two simulating columns by recycling to the columns themselves without being discharged into the enviroment. The columns were employed to simulate anaerobic and s...The experiment was conducted to treat the leachate from two simulating columns by recycling to the columns themselves without being discharged into the enviroment. The columns were employed to simulate anaerobic and semi-aerobic landfills separately. The influence of landfill structure on stabilization of fully recycled leachate was studied. The results show that semi-aerobic landfill structure accelerates the stabilization of leachate recycled. The full recycle of leachate in semi-aerobic landfill is a very feasible and effective technology for leachate treatment with low cost and energy saving especially in arid and rare rainfall regions. Meanwhile, the environmental impact of landfill can be greatly minimized.展开更多
The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disp...The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disposal of solid residues from combustion and off gas cleaning. This investigation describes chances for the utilization of fly ash from coal-fired power plants in China. After briefly comparing the situation in China and Germany, the status of aluminum recycling from fly ash and the ad- vantages for using fly ash in concrete products are introduced. Chemical and physical analyses of Chinese fly ash samples, e.g., X-ray diffraction (XRD), ICP (Inductive Coupled Plasma) and particle size analysis, water requirement, etc. are presented. Rea- sonable amounts of aluminum were detected in the samples under investigation, but for recovery only sophisticated procedures are available up to now. Therefore, simpler techniques are suggested for the first steps in the utilization of Chinese fly ash.展开更多
This paper introduces landfill site of Chuzhou domestic waste, to which the improved anaerobic hygienic burying technology is applied. Chuzhou City, situated between Yangtze River and Huai River, is a window city in t...This paper introduces landfill site of Chuzhou domestic waste, to which the improved anaerobic hygienic burying technology is applied. Chuzhou City, situated between Yangtze River and Huai River, is a window city in the east of Anhui Province. A landfill site with a capacity of 400 ton per day is to be constructed according to the city development plan and the garbage amount, This paper summarizes the landfill location, landform, groundwater, surface water, landfill stratal configuration, dominant wind, and the major machinery equipment. The projects of anti-percolation, seepage collection, seepage disposal, rainwater discharge, biogas diversion are deeply studied. The advanced design principle of the landfills is summarized, which is environment-friendly, science-oriented and economy-based. Environment-friendly principle is implemented in the selection of landfill location, construction of all projects, sealing up project and perfecting environment monitoring system; science-oriented principle prescribes that the design, construction, and management should be science-oriented; the selection of landfill location, design, plan optimization, resource-saving measures and comprehensive utilization should be economy-based Chuzhou domestic waste landfill site is qualified as a goiden model in this paper.展开更多
Development space of the waste incineration power generation is expanding. According to the technical route of previous planning and related policies, the principles of our garbage disposal are based on sanitary landf...Development space of the waste incineration power generation is expanding. According to the technical route of previous planning and related policies, the principles of our garbage disposal are based on sanitary landfill, supplemented by burning. However, with the accelerated process of urbanization, land resources are increasingly strained and most large cities have been unable to find a suitable landfill within the feasible urban extent, the main equipment for the incinerator and the localization of the overall process greatly reduced its capital investment and these factors will promote the rapid development of waste incineration power generation industry. Waste incineration and power generation technology has the dual benefits of environmental protection and energy and it is the development direction of waste disposal in the future. According to the condition that our country's waste incineration power generation started from scratch and developed rapidly in recent years ,there is a introduction about the application of the waste incineration and a brief analysis of the its obstacles in the promotion and financing, as well as the potential for future applications.展开更多
The compressibility of stale waste is studied based on the investigation into the composition and properties of stale waste in the Chongqing City. Stale waste sampled at a landfill closed for over 8 a was analyzed ind...The compressibility of stale waste is studied based on the investigation into the composition and properties of stale waste in the Chongqing City. Stale waste sampled at a landfill closed for over 8 a was analyzed indoors for its natural density, natural water content, relative density, grain size distribution curve, uniformity coefficient and curvature coefficient. Indoor compression tests for the stale waste were performed to find out the void ratio and its dependence upon applied pressure, compressibility coefficient, constrained modulus and volume compressibility coefficient. From the experimental data, the curvature coefficient and the preconsolidation pressure of the stale waste were worked out. The results indicates that the stale waste is of high compressibility, which is different from the other kinds of common soil, and is underconsolidated soil. The measured compressibility parameters are applicable to settlement calculation of closed landfills.展开更多
Based on hydro-geological of Qilongcun landfill, the transportation mathematical model of leachat was established. The boundaries conditions and replenishment ofmodel were determined. The leachate COD density and the ...Based on hydro-geological of Qilongcun landfill, the transportation mathematical model of leachat was established. The boundaries conditions and replenishment ofmodel were determined. The leachate COD density and the water level were simulated, and the model was identified, and then the right model was defined. The right model was used to simulate leachate COD density in the interior, exterior, and peripheral of landfill. The results show that the COD densities are not high. The pollution is slight in the interior of landfill and is little in the exterior of landfill. They are proving the overburden on top of landfill and drain around the landfill is right. The max. density on the south of landfill shows it is scientific that the cisterns are building on the south of landfill. The paper shows the remediation scheme is feasible.展开更多
The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansi...The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.展开更多
The rapid increase in population in Thika has led to increase in municipal solid waste generation, which has posed challenges in the waste disposal and management. This study was carried out to quantify and characteri...The rapid increase in population in Thika has led to increase in municipal solid waste generation, which has posed challenges in the waste disposal and management. This study was carried out to quantify and characterize the waste generated within Thika municipality. Six months data (between March 2014 and August 2014) of waste stream at the dumpsite was reviewed and analyzed. The survey indicated that 66.95% ± 0.34% of the total waste dumped originated from the municipal council ofThika (MCT). It constitutes of domestic, commercial and institutional waste. 33.05% is industrial waste. Sixty eight percent (68%) of the waste consisted primarily of four components: paper, plastic, organics and food. Food accounted for 15.51% ± 0.95%, paper 18.31% ± 1.7%, plastics 17.89% ± 0.81% and organics other than food 16.51% ±1.01%, respectively obtained at 95% confidence level. Each of the components has some level of recovery. Some of the reusable and recyclable materials were being recovered, food waste had the highest recovery rate of 23% ± 1.7% and was used as animal feed, while plastic (soft plastic) 17% ± 0.93% was sold to recyclers. Recovery of materials for recycling and composting was estimated at 10.21 tonnes or 11.35% of daily generation, leaving 76.44 tonnes per day that can be converted into useful energy. The study shows waste in this dumpsite can be exploited to by converting it to energy thus a good solution for waste management.展开更多
Livestock farm waste contributes substantially to annual worldwide emissions of GHG (Greenhouse Gases), including CH4 (Methane) and CO2 (Carbon Dioxide). However, despite evidence of global climate change and it...Livestock farm waste contributes substantially to annual worldwide emissions of GHG (Greenhouse Gases), including CH4 (Methane) and CO2 (Carbon Dioxide). However, despite evidence of global climate change and its adverse health effects, studies on anthropogenic contributions to the increasing levels of GHG, particularly from livestock waste management practices, have not been adequately explored, especially in less developed countries. This study determined waste management practices and outdoor levels of CH4 and CO2 at three selected livestock farms (A-C) in Ibadan, Oyo State, Nigeria. Each study farm consisted of poultry, cattle and pig units. A 30-point observational checklist documented adequacy of solid waste management practices. Ambient concentrations of CH4 and CO2 at farm buildings and at waste disposal sites were monitored every other day, twice each day of monitoring (morning and evening hours), for eight weeks during months of September-November in 2013. Average scores for the waste management practices for Farms A-C were 29.6%, 33.3% and 18.5%, respectively. Morning and evening CH4 concentrations in parts per million (ppm) at main buildings of Farms A-C were 2,538 ± 773 and 1,916 ± 662, 2,325 ± 773 and 1,180 ± 483, and 2,389 ± 687 and 1,854 ± 571, respectively. Morning and evening CO2 concentrations (ppm) at Farms A-C main buildings were 350 ± 130 and 330 ± 110, 470 ± 100 and 440 ± 100, and 430 ± 80 and 400 ± 70, respectively. Morning and evening CH4 concentrations (ppm) at Farms A-C waste disposal sites were 2,452 ± 495 and 1,614 ± 372, 1,527 ± 390 and 1,736 ± 269, and 2,345 ± 615 and 1,690 ± 387, respectively. Morning and evening CO2 concentrations (ppm) at Farms A-C waste disposal sites were 330 ± 90, 370 ± 60 and 350 ± 30, respectively. Waste management practices were inadequate; solid waste management practices like infrequent evacuation of slurry waste and open burning of waste may have contributed to the production of CH4 and CO2. This study suggested proper handling, removal and disposal of farm waste which can reduce production of GHGs like CH4 and CO2.展开更多
General as well as the municipal solid waste (MSW) management in Thailand is reviewed in this paper. Topics include the MSW generation, sources, composition and trends. The review, then, moves to sustainable solutio...General as well as the municipal solid waste (MSW) management in Thailand is reviewed in this paper. Topics include the MSW generation, sources, composition and trends. The review, then, moves to sustainable solutions for MSW management and sustainable alternative approaches with an emphasis on an integrated MSW management. Information of waste in Thailand is also given at the beginning of this paper for better understanding of later contents. It is clear that no one single method of MSW disposal can deal with all materials in an environmentally sustainable way. As such, a suitable approach in MSW management should be an integrated approach that could deliver both environmental and economic sustainability. With increasing environmental concerns, the integrated MSW management system has a potential to maximize the useable waste materials as well as produce energy as a by-product. In Thailand, the compositions of waste (86%) are mainly organic waste, paper, plastic, glass and metal. As a result, the waste in Thailand is suitable for an integrated MSW management. Currently, the Thai national waste management policy starts to encourage the local administrations to gather into clusters, to establish central MSW disposal facilities with suitable technologies and reducing the disposal cost based on the amount of MSW generated.展开更多
The present study was conducted for the optimization of pretreatment and enzymatic hydrolysis of lignocellulosic biomass (sugarcane trash), which is a renewable resource for the production of bioethanol. The pretrea...The present study was conducted for the optimization of pretreatment and enzymatic hydrolysis of lignocellulosic biomass (sugarcane trash), which is a renewable resource for the production of bioethanol. The pretreatment and enzymatic hydrolysis conditions including alkali (NaOH)/dilute acid (H2SO4), substrate and chemical concentration for pretreatment, enzyme dosage, pH, temperature and substrate concentration for hydrolysis were varied and evaluated for sugar and ethanol production at the end. The optimum condition was accomplished using 15% w/v DS of 0-2 mm sugarcane trash in size of particle. It was pretreated with two steps of 2% w/v NaOH autoclaving followed by 2% w/v H2SO4 autoclaving with washing step after pretreatment. An enzymatic hydrolysis was then performed using 15% w/v DS pretreated substrate, hydrolyzed with cellulase 50 filter paper unit (FPU)/g DS at 50 ℃ and pH 5. After incubating at 160 r for 48 h, 117.16 g/L reducing sugar was obtained. The achieved sugar after enzymatic hydrolysis was finally fermented to ethanol by Saccharomyces cerevisiae TISTR 5596, with concentration of 48.17 g/L ethanol or yield 0.509 g/g reducing sugars which was equal to 99.81% of theoretical yield.展开更多
基金funded by the National Natural Science Foundation of China (Grant No.31170414)the 100 Talents Program of Chinese Academy of Sciences,and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA05060600)
文摘Soil respiration from decomposing aboveground litter is a major component of the terrestrial carbon cycle. However, variations in the contribution of aboveground litter to the total soil respiration for stands of varying ages are poorly understood. To assess soil respiration induced by aboveground litter, treatments of litter and no litter were applied to 5-, l0-, and 20-year-old stands of Populus davidiana Dode in the sandstorm source area of Beijing-Tianjin, equations were applied to China. Optimal nonlinear model the combined effects of soil temperature and soil water content on soil respiration. Results showed that the monthly average contribution of aboveground litter to total soil respiration were 18.46% ± 4.63%, 16.64% ± 9.31%, and 22.37% ± 8.17% for 5-, 10-, and ao-year-old stands, respectively. The relatively high contribution in 5- and 20-year-old stands could be attributed to easily decomposition products and high accumulated litter, resoectivelv. Also. it fluctuated monthly for all stand ages due to substrate availability caused by phenology and environmental factors. Litter removal significantly decreased soil respiration and soil water content for all stand ages (P 〈 0.05) but not soil temperature (P 〉 0.05). Variations of soil respiration could be explained by soil temperature at 5-cm depth using an exponential equation and by soil water content at lo-cm depth using a quadratic equation, whereas soil respiration was better modeled using the combined parameters of soil temperature and soil water content than with either soil temperature or soil water content alone. Temperature sensitivity (Q10) increased with stand age in both the litter and the no litter treatments. Considering the effects of aboveground litter, this study provides insights for predicting future soil carbon fluxes and for accurately assessing soil carbon budgets.
文摘The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, and decrement of garbage were evaluated through experiments. Fermentation were carried out in an incubator at 5, 25, 37 and 50 ℃. The latic acid produced was maximum at initial pH 6.0 and 37 ℃, i.e. 38 g/L with a yield of 0.23 g/gVS. It is concluded from the experimental results that temperature has quite a considerable effect on the production of lactic acid; lactic acid concentration increases with temperature until 37 ℃, and production rate of lactic acid drops at 50 ℃; the optimal fermentation is 37 ℃. This study shows that production of lactic acid from kitchen garbage is feasible and reduction of garbage can be realized.
基金Project(2003-MOC-NGGP-03) supported by the Netherlands Government Grant Project
文摘The experiment was conducted to treat the leachate from two simulating columns by recycling to the columns themselves without being discharged into the enviroment. The columns were employed to simulate anaerobic and semi-aerobic landfills separately. The influence of landfill structure on stabilization of fully recycled leachate was studied. The results show that semi-aerobic landfill structure accelerates the stabilization of leachate recycled. The full recycle of leachate in semi-aerobic landfill is a very feasible and effective technology for leachate treatment with low cost and energy saving especially in arid and rare rainfall regions. Meanwhile, the environmental impact of landfill can be greatly minimized.
文摘The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disposal of solid residues from combustion and off gas cleaning. This investigation describes chances for the utilization of fly ash from coal-fired power plants in China. After briefly comparing the situation in China and Germany, the status of aluminum recycling from fly ash and the ad- vantages for using fly ash in concrete products are introduced. Chemical and physical analyses of Chinese fly ash samples, e.g., X-ray diffraction (XRD), ICP (Inductive Coupled Plasma) and particle size analysis, water requirement, etc. are presented. Rea- sonable amounts of aluminum were detected in the samples under investigation, but for recovery only sophisticated procedures are available up to now. Therefore, simpler techniques are suggested for the first steps in the utilization of Chinese fly ash.
文摘This paper introduces landfill site of Chuzhou domestic waste, to which the improved anaerobic hygienic burying technology is applied. Chuzhou City, situated between Yangtze River and Huai River, is a window city in the east of Anhui Province. A landfill site with a capacity of 400 ton per day is to be constructed according to the city development plan and the garbage amount, This paper summarizes the landfill location, landform, groundwater, surface water, landfill stratal configuration, dominant wind, and the major machinery equipment. The projects of anti-percolation, seepage collection, seepage disposal, rainwater discharge, biogas diversion are deeply studied. The advanced design principle of the landfills is summarized, which is environment-friendly, science-oriented and economy-based. Environment-friendly principle is implemented in the selection of landfill location, construction of all projects, sealing up project and perfecting environment monitoring system; science-oriented principle prescribes that the design, construction, and management should be science-oriented; the selection of landfill location, design, plan optimization, resource-saving measures and comprehensive utilization should be economy-based Chuzhou domestic waste landfill site is qualified as a goiden model in this paper.
文摘Development space of the waste incineration power generation is expanding. According to the technical route of previous planning and related policies, the principles of our garbage disposal are based on sanitary landfill, supplemented by burning. However, with the accelerated process of urbanization, land resources are increasingly strained and most large cities have been unable to find a suitable landfill within the feasible urban extent, the main equipment for the incinerator and the localization of the overall process greatly reduced its capital investment and these factors will promote the rapid development of waste incineration power generation industry. Waste incineration and power generation technology has the dual benefits of environmental protection and energy and it is the development direction of waste disposal in the future. According to the condition that our country's waste incineration power generation started from scratch and developed rapidly in recent years ,there is a introduction about the application of the waste incineration and a brief analysis of the its obstacles in the promotion and financing, as well as the potential for future applications.
基金Application and Foundation Research Fund of Chongqing Construction Committee,2001.
文摘The compressibility of stale waste is studied based on the investigation into the composition and properties of stale waste in the Chongqing City. Stale waste sampled at a landfill closed for over 8 a was analyzed indoors for its natural density, natural water content, relative density, grain size distribution curve, uniformity coefficient and curvature coefficient. Indoor compression tests for the stale waste were performed to find out the void ratio and its dependence upon applied pressure, compressibility coefficient, constrained modulus and volume compressibility coefficient. From the experimental data, the curvature coefficient and the preconsolidation pressure of the stale waste were worked out. The results indicates that the stale waste is of high compressibility, which is different from the other kinds of common soil, and is underconsolidated soil. The measured compressibility parameters are applicable to settlement calculation of closed landfills.
基金Supported by the Natural Science Foundation of Chongqing (102075120040022)Fundamental Foundation of Municipal Manage Committee of Chongqing City (103187220050100)
文摘Based on hydro-geological of Qilongcun landfill, the transportation mathematical model of leachat was established. The boundaries conditions and replenishment ofmodel were determined. The leachate COD density and the water level were simulated, and the model was identified, and then the right model was defined. The right model was used to simulate leachate COD density in the interior, exterior, and peripheral of landfill. The results show that the COD densities are not high. The pollution is slight in the interior of landfill and is little in the exterior of landfill. They are proving the overburden on top of landfill and drain around the landfill is right. The max. density on the south of landfill shows it is scientific that the cisterns are building on the south of landfill. The paper shows the remediation scheme is feasible.
文摘The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.
文摘The rapid increase in population in Thika has led to increase in municipal solid waste generation, which has posed challenges in the waste disposal and management. This study was carried out to quantify and characterize the waste generated within Thika municipality. Six months data (between March 2014 and August 2014) of waste stream at the dumpsite was reviewed and analyzed. The survey indicated that 66.95% ± 0.34% of the total waste dumped originated from the municipal council ofThika (MCT). It constitutes of domestic, commercial and institutional waste. 33.05% is industrial waste. Sixty eight percent (68%) of the waste consisted primarily of four components: paper, plastic, organics and food. Food accounted for 15.51% ± 0.95%, paper 18.31% ± 1.7%, plastics 17.89% ± 0.81% and organics other than food 16.51% ±1.01%, respectively obtained at 95% confidence level. Each of the components has some level of recovery. Some of the reusable and recyclable materials were being recovered, food waste had the highest recovery rate of 23% ± 1.7% and was used as animal feed, while plastic (soft plastic) 17% ± 0.93% was sold to recyclers. Recovery of materials for recycling and composting was estimated at 10.21 tonnes or 11.35% of daily generation, leaving 76.44 tonnes per day that can be converted into useful energy. The study shows waste in this dumpsite can be exploited to by converting it to energy thus a good solution for waste management.
文摘Livestock farm waste contributes substantially to annual worldwide emissions of GHG (Greenhouse Gases), including CH4 (Methane) and CO2 (Carbon Dioxide). However, despite evidence of global climate change and its adverse health effects, studies on anthropogenic contributions to the increasing levels of GHG, particularly from livestock waste management practices, have not been adequately explored, especially in less developed countries. This study determined waste management practices and outdoor levels of CH4 and CO2 at three selected livestock farms (A-C) in Ibadan, Oyo State, Nigeria. Each study farm consisted of poultry, cattle and pig units. A 30-point observational checklist documented adequacy of solid waste management practices. Ambient concentrations of CH4 and CO2 at farm buildings and at waste disposal sites were monitored every other day, twice each day of monitoring (morning and evening hours), for eight weeks during months of September-November in 2013. Average scores for the waste management practices for Farms A-C were 29.6%, 33.3% and 18.5%, respectively. Morning and evening CH4 concentrations in parts per million (ppm) at main buildings of Farms A-C were 2,538 ± 773 and 1,916 ± 662, 2,325 ± 773 and 1,180 ± 483, and 2,389 ± 687 and 1,854 ± 571, respectively. Morning and evening CO2 concentrations (ppm) at Farms A-C main buildings were 350 ± 130 and 330 ± 110, 470 ± 100 and 440 ± 100, and 430 ± 80 and 400 ± 70, respectively. Morning and evening CH4 concentrations (ppm) at Farms A-C waste disposal sites were 2,452 ± 495 and 1,614 ± 372, 1,527 ± 390 and 1,736 ± 269, and 2,345 ± 615 and 1,690 ± 387, respectively. Morning and evening CO2 concentrations (ppm) at Farms A-C waste disposal sites were 330 ± 90, 370 ± 60 and 350 ± 30, respectively. Waste management practices were inadequate; solid waste management practices like infrequent evacuation of slurry waste and open burning of waste may have contributed to the production of CH4 and CO2. This study suggested proper handling, removal and disposal of farm waste which can reduce production of GHGs like CH4 and CO2.
文摘General as well as the municipal solid waste (MSW) management in Thailand is reviewed in this paper. Topics include the MSW generation, sources, composition and trends. The review, then, moves to sustainable solutions for MSW management and sustainable alternative approaches with an emphasis on an integrated MSW management. Information of waste in Thailand is also given at the beginning of this paper for better understanding of later contents. It is clear that no one single method of MSW disposal can deal with all materials in an environmentally sustainable way. As such, a suitable approach in MSW management should be an integrated approach that could deliver both environmental and economic sustainability. With increasing environmental concerns, the integrated MSW management system has a potential to maximize the useable waste materials as well as produce energy as a by-product. In Thailand, the compositions of waste (86%) are mainly organic waste, paper, plastic, glass and metal. As a result, the waste in Thailand is suitable for an integrated MSW management. Currently, the Thai national waste management policy starts to encourage the local administrations to gather into clusters, to establish central MSW disposal facilities with suitable technologies and reducing the disposal cost based on the amount of MSW generated.
文摘The present study was conducted for the optimization of pretreatment and enzymatic hydrolysis of lignocellulosic biomass (sugarcane trash), which is a renewable resource for the production of bioethanol. The pretreatment and enzymatic hydrolysis conditions including alkali (NaOH)/dilute acid (H2SO4), substrate and chemical concentration for pretreatment, enzyme dosage, pH, temperature and substrate concentration for hydrolysis were varied and evaluated for sugar and ethanol production at the end. The optimum condition was accomplished using 15% w/v DS of 0-2 mm sugarcane trash in size of particle. It was pretreated with two steps of 2% w/v NaOH autoclaving followed by 2% w/v H2SO4 autoclaving with washing step after pretreatment. An enzymatic hydrolysis was then performed using 15% w/v DS pretreated substrate, hydrolyzed with cellulase 50 filter paper unit (FPU)/g DS at 50 ℃ and pH 5. After incubating at 160 r for 48 h, 117.16 g/L reducing sugar was obtained. The achieved sugar after enzymatic hydrolysis was finally fermented to ethanol by Saccharomyces cerevisiae TISTR 5596, with concentration of 48.17 g/L ethanol or yield 0.509 g/g reducing sugars which was equal to 99.81% of theoretical yield.