On site composting of organic household wastes is an economical and environmentally tiiendly way to manage municipal wastes. In this manuscript authors evaluated the importance of turning the wastes and of inoculating...On site composting of organic household wastes is an economical and environmentally tiiendly way to manage municipal wastes. In this manuscript authors evaluated the importance of turning the wastes and of inoculating microorganisms and worms in order to unprove the composting process at domestic scale. Four treatments (Control without turning- C-, Control with Turning- CT- inoculated Mountain Microorganism with turning- MM- and Worms without turning- W-) were tested in a random experiment with tour replicates. Sixteen composting bins were fed with 300 kg of organic wastes from a local street market. The process of compostnig lasted 13 weeks after which all the composts were sifted and submitted to a range of chemical, physical and biological analysis. According to the results MM slightly increased the initial temperature and enzymatic activiry. This investigation outcome don't provide of sufficient grounds for a precise recommendation about worms inoculation in compost bins. A decrease between 75% and 80% in the fresh weight of the organic waste was found in the first thirteen weeks after starting the composting process in all the treatments. The quality level of the compost was acceptable, with very low heavy metal content. Turn over helps to keep the product hygienic especially after the inoculation with MM microbial starts. In conclusion and according to the results of this investigation, the use of 320 L compost bins for the organic waste management is strongly advisable.展开更多
Biowaste compost can influence soil organic matter accumulation directly or indirectly. A 5-year experiment was conducted to assess the influence of biowaste compost on the process of soil aggregation and soil organic...Biowaste compost can influence soil organic matter accumulation directly or indirectly. A 5-year experiment was conducted to assess the influence of biowaste compost on the process of soil aggregation and soil organic carbon (SOC) accumulation in a Mediterranean vegetable cropping system. The study involved four treatments: biowaste compost (COM), mineral NPK fertilizers (MIN), biowaste compost with half-dose N fertilizer (COMN), and unfertilized control (CK). The SOC stocks were increased in COM, COMN, and MIN by 20.2, 14.9, and 2.4 Mg ha-1 over CK, respectively. The SOC concentration was significantly related to mean weight diameter of aggregates (MWD) (P 〈 0.05, R^2 = 0.798 4) when CK was excluded from regression analysis. Compared to CK, COM and COMN increased the SOC amount in macroaggregates (〉 250 μm) by 2.7 and 0.6 g kg-1 soil, respectively, while MIN showed a loss of 0.4 g kg-1 soil. The SOC amount in free microaggregates (53-250 ttm) increased by 0.9, 1.6, and 1.0 g kg-1 soil for COM, COMN, and MIN, respectively, while those in the free silt plus clay aggregates (~ 53 ~m) did not vary significantly. However, when separating SOC in particle-size fractions, we found that more stable organic carbon associated with mineral fraction 〈 53 μm (MOM-C) increased significantly by 3.4, 2.2, and 0.7 g kg-1 soil for COM, COMN, and MIN, respectively, over CK, while SOC amount in fine particulate organic matter (POM) fraction (53-250 μm) increased only by 0.3 g kg-1 soil for both COM and COMN, with no difference in coarse POM 〉 250 μm. Therefore, we consider that biowaste compost could be effective in improving soil structure and long-term C sequestration as more stable MOM-C.展开更多
文摘On site composting of organic household wastes is an economical and environmentally tiiendly way to manage municipal wastes. In this manuscript authors evaluated the importance of turning the wastes and of inoculating microorganisms and worms in order to unprove the composting process at domestic scale. Four treatments (Control without turning- C-, Control with Turning- CT- inoculated Mountain Microorganism with turning- MM- and Worms without turning- W-) were tested in a random experiment with tour replicates. Sixteen composting bins were fed with 300 kg of organic wastes from a local street market. The process of compostnig lasted 13 weeks after which all the composts were sifted and submitted to a range of chemical, physical and biological analysis. According to the results MM slightly increased the initial temperature and enzymatic activiry. This investigation outcome don't provide of sufficient grounds for a precise recommendation about worms inoculation in compost bins. A decrease between 75% and 80% in the fresh weight of the organic waste was found in the first thirteen weeks after starting the composting process in all the treatments. The quality level of the compost was acceptable, with very low heavy metal content. Turn over helps to keep the product hygienic especially after the inoculation with MM microbial starts. In conclusion and according to the results of this investigation, the use of 320 L compost bins for the organic waste management is strongly advisable.
文摘Biowaste compost can influence soil organic matter accumulation directly or indirectly. A 5-year experiment was conducted to assess the influence of biowaste compost on the process of soil aggregation and soil organic carbon (SOC) accumulation in a Mediterranean vegetable cropping system. The study involved four treatments: biowaste compost (COM), mineral NPK fertilizers (MIN), biowaste compost with half-dose N fertilizer (COMN), and unfertilized control (CK). The SOC stocks were increased in COM, COMN, and MIN by 20.2, 14.9, and 2.4 Mg ha-1 over CK, respectively. The SOC concentration was significantly related to mean weight diameter of aggregates (MWD) (P 〈 0.05, R^2 = 0.798 4) when CK was excluded from regression analysis. Compared to CK, COM and COMN increased the SOC amount in macroaggregates (〉 250 μm) by 2.7 and 0.6 g kg-1 soil, respectively, while MIN showed a loss of 0.4 g kg-1 soil. The SOC amount in free microaggregates (53-250 ttm) increased by 0.9, 1.6, and 1.0 g kg-1 soil for COM, COMN, and MIN, respectively, while those in the free silt plus clay aggregates (~ 53 ~m) did not vary significantly. However, when separating SOC in particle-size fractions, we found that more stable organic carbon associated with mineral fraction 〈 53 μm (MOM-C) increased significantly by 3.4, 2.2, and 0.7 g kg-1 soil for COM, COMN, and MIN, respectively, over CK, while SOC amount in fine particulate organic matter (POM) fraction (53-250 μm) increased only by 0.3 g kg-1 soil for both COM and COMN, with no difference in coarse POM 〉 250 μm. Therefore, we consider that biowaste compost could be effective in improving soil structure and long-term C sequestration as more stable MOM-C.