In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Vi...In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Village of Xiqing District into 3 groups: compostable materials, recyclable materials and toxics on the basis of the constructed secondary classification mode of domestic waste. The study focused on waste generation strength and classification features, compared the waste generation features between rural and urban residents, and analyzed the re- lation between waste generation strength and economic and cultural factors. The re- sults indicated that the average generation speed of urban domestic waste was 423.08 g/(d.capita), and that of rural domestic waste was 629.89 g/(d.capita), there was significant difference between rural and urban compost generation strength (P= 0.00002), while the generation strength of recyclable materials and toxics between rural and urban areas had no significant difference (P=0.471 and P=0.099, respec- tively). Secondary classification mode is an effective source classification mode for domestic wastes and has positive effects on waste reduction and treatment.展开更多
Four waste materials, paper, wood, textile and kitchen garbage, in municipal solid waste were gasified separately with oxygen in a fixed bed reactor. The yields of products char. tar and gas, the composition of gas co...Four waste materials, paper, wood, textile and kitchen garbage, in municipal solid waste were gasified separately with oxygen in a fixed bed reactor. The yields of products char. tar and gas, the composition of gas components H2, CO, CO2 and CH4, and the lower heating value (LHV) were examined at temperatures between 700 and 900 ℃ and equivalence ratio (ER) between 0.14 and 0.32. Characteristics of gas evolution during gasification were inves- tigated. Results show that a higher temperature improves the formation of H2 and CO while lowers the yield of CO2 and CH4. The LHV of syngas increases with temperature and varies in the range of 6-10 MJ. m-3 reaching the maximum at 800 ℃ or above. As ER increases, both combustible gas component and LHV of syngas decrease while the yield of CO2 rises linearly. The appropriate ER for obtaining high quality gas is in the range of 0.18-0.23. Temperature and ER have significant effects on the product distribution. Higher temperature and ER are favorable for higher gas yield and lower yield of char and tar in the gasification of textile and kitchen garbage. At 800 ℃, the gas evolution may be divided into two regions. In the first region, the flow rate of gas increases and then de- creases ranidlv, while in the second reuion the flow rate decreases monotonically to lower level.展开更多
Stormwater runoff has become an important source of surface water pollution. Bioretention, a low impact development measure in urban stormwater management, has been proven to be effective in the removal of pollutants ...Stormwater runoff has become an important source of surface water pollution. Bioretention, a low impact development measure in urban stormwater management, has been proven to be effective in the removal of pollutants from stormwater runoff, with appropriate bioretention media. In this study, construction wastes were selected as bioretention media to remove heavy metals from stormwater runoff. Static and dynamic adsorption batch experiments were carried out to investigate the adsorption of heavy metals in simulated stormwater runoff system with construction wastes in different particle sizes. The experimental results show that the pseudo-secondorder kinetic model characterizes the adsorption process and the adsorption equilibrium data are well described by Freundlich isotherm model. The construction wastes used can remove heavy metals from stormwater runoff effectively, with their average removal rates all more than 90%. The particle size of construction wastes greatly influences the equilibrium time, rate and adsorption capacity for heavy metals.展开更多
The vitrification characteristics of municipal solid waste incinerator (MSWI) fly ash were investigated. Effects of temperature on the binding efficiency of heavy metals, the change of chemical compositions and the we...The vitrification characteristics of municipal solid waste incinerator (MSWI) fly ash were investigated. Effects of temperature on the binding efficiency of heavy metals, the change of chemical compositions and the weight loss of fly ash in the range of 800-1350 ℃ were studied. Toxicity Characteristic Leaching Procedure (TCLP) of the United States was used to analyze the leaching characteristics of heavy metals in fly ash and molten slag. Results indicate that chemical compositions, the weight loss of fly ash and the binding efficiency of heavy metals in fly ash have a tremendous change in the range of 1150-1260 ℃. The percentage of CaO, SiO2 and Al2O3 increases with the increasing temperature, whereas it is contrary for SO3, K2O, Na2O and Cl; especially when the temperature is 1260 ℃, the percentage of these four elements decreases sharply from 43.72% to 0.71%. The weight loss occurs obviously in the range of 1150-1260 ℃. Heavy metals of Pb and Cd are almost vaporized above 1000 ℃. Cr is not volatile and its binding efficiency can reach 100% below 1000 ℃. Results of TCLP indicate that the heavy metal content of molten slag is beyond stipulated limit values.展开更多
基金Supported by Agricultural Scientific and Technological Achievement Transformation and Popularization Project of Tianjin(201003010)~~
文摘In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Village of Xiqing District into 3 groups: compostable materials, recyclable materials and toxics on the basis of the constructed secondary classification mode of domestic waste. The study focused on waste generation strength and classification features, compared the waste generation features between rural and urban residents, and analyzed the re- lation between waste generation strength and economic and cultural factors. The re- sults indicated that the average generation speed of urban domestic waste was 423.08 g/(d.capita), and that of rural domestic waste was 629.89 g/(d.capita), there was significant difference between rural and urban compost generation strength (P= 0.00002), while the generation strength of recyclable materials and toxics between rural and urban areas had no significant difference (P=0.471 and P=0.099, respec- tively). Secondary classification mode is an effective source classification mode for domestic wastes and has positive effects on waste reduction and treatment.
基金Supported by the National Basic Research Program of China(2011CB201505)the National Natural Science Foundation of China(51006023)
文摘Four waste materials, paper, wood, textile and kitchen garbage, in municipal solid waste were gasified separately with oxygen in a fixed bed reactor. The yields of products char. tar and gas, the composition of gas components H2, CO, CO2 and CH4, and the lower heating value (LHV) were examined at temperatures between 700 and 900 ℃ and equivalence ratio (ER) between 0.14 and 0.32. Characteristics of gas evolution during gasification were inves- tigated. Results show that a higher temperature improves the formation of H2 and CO while lowers the yield of CO2 and CH4. The LHV of syngas increases with temperature and varies in the range of 6-10 MJ. m-3 reaching the maximum at 800 ℃ or above. As ER increases, both combustible gas component and LHV of syngas decrease while the yield of CO2 rises linearly. The appropriate ER for obtaining high quality gas is in the range of 0.18-0.23. Temperature and ER have significant effects on the product distribution. Higher temperature and ER are favorable for higher gas yield and lower yield of char and tar in the gasification of textile and kitchen garbage. At 800 ℃, the gas evolution may be divided into two regions. In the first region, the flow rate of gas increases and then de- creases ranidlv, while in the second reuion the flow rate decreases monotonically to lower level.
基金Supported by the National Natural Science Foundation of China(51208022)the National Water Pollution Control and Management Technology Major Project(2011ZX07301-004-01)
文摘Stormwater runoff has become an important source of surface water pollution. Bioretention, a low impact development measure in urban stormwater management, has been proven to be effective in the removal of pollutants from stormwater runoff, with appropriate bioretention media. In this study, construction wastes were selected as bioretention media to remove heavy metals from stormwater runoff. Static and dynamic adsorption batch experiments were carried out to investigate the adsorption of heavy metals in simulated stormwater runoff system with construction wastes in different particle sizes. The experimental results show that the pseudo-secondorder kinetic model characterizes the adsorption process and the adsorption equilibrium data are well described by Freundlich isotherm model. The construction wastes used can remove heavy metals from stormwater runoff effectively, with their average removal rates all more than 90%. The particle size of construction wastes greatly influences the equilibrium time, rate and adsorption capacity for heavy metals.
基金Sponsored by the Chinese Postdoctoral Fund(Grant No.023205030)National Natural Science Foundation of China(Grant No.20577047)
文摘The vitrification characteristics of municipal solid waste incinerator (MSWI) fly ash were investigated. Effects of temperature on the binding efficiency of heavy metals, the change of chemical compositions and the weight loss of fly ash in the range of 800-1350 ℃ were studied. Toxicity Characteristic Leaching Procedure (TCLP) of the United States was used to analyze the leaching characteristics of heavy metals in fly ash and molten slag. Results indicate that chemical compositions, the weight loss of fly ash and the binding efficiency of heavy metals in fly ash have a tremendous change in the range of 1150-1260 ℃. The percentage of CaO, SiO2 and Al2O3 increases with the increasing temperature, whereas it is contrary for SO3, K2O, Na2O and Cl; especially when the temperature is 1260 ℃, the percentage of these four elements decreases sharply from 43.72% to 0.71%. The weight loss occurs obviously in the range of 1150-1260 ℃. Heavy metals of Pb and Cd are almost vaporized above 1000 ℃. Cr is not volatile and its binding efficiency can reach 100% below 1000 ℃. Results of TCLP indicate that the heavy metal content of molten slag is beyond stipulated limit values.