Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ...Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.展开更多
Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, ...Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, its force behavior, ductility and failure mechanism under vertical and horizontal loads are studied. The results show that loading bearing and seismic behavior of transfer story structure with steel reinforced concrete beam and basement column is good. The relative design suggestion is put forward.展开更多
With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for dee...With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.展开更多
With the method of neural network, the processes of fatigue stiffness decreasing and deflection increasing of reinforced concrete beams under cyclic loading were simulated. The simulating system was built with the giv...With the method of neural network, the processes of fatigue stiffness decreasing and deflection increasing of reinforced concrete beams under cyclic loading were simulated. The simulating system was built with the given experimental data. The prediction model of neural network structure and the corresponding parameters were obtained. The precision and results were satisfied and could be used to investigate the fatigue properties of reinforced concrete beams in complex environment and under repeating loads.展开更多
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction in...Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.展开更多
Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor ha...Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor have been done on this new kind of floor system in this paper. The experiment results show that the floor system has good mechanical property such as high bearing capacity, big rigidity and good tensility. A theoretical method is presented in this paper that the stiffening-ribbed-hollow-pipe girderless floor can be analyzed by being converted equivalently to orthotropic solid slab. It is indicated that the method is correct and reasonable according to the contrast between theoretical calculated results and experimental measured results. The theoretical results coincide with the measured results well.展开更多
The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repair...The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repaired bridge is carried out. The diagnosis enables us to locate and detect the damage in a reinforced concrete bridge. Thus, developments of analytical predictions have been checked by modal testing techniques. Besides, the FTCS (finite time centered space) scheme is developed to solve the set of equations which can easily handle finite element matrices of a bridge model. It is shown in this study that the method is applied to detect damages as well as existing cracks in real time of a repaired bridge. To check the efficiency of the method, the repaired bridge of OuedOumazer in Algeria has been selected. It is proven that identification methods have been able to detect the exact location of damage areas to be corrected avoiding the inaccuracy from the finite element model for the mass, stiffness and loading.展开更多
Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety iss...Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety issues. Degradation of both concrete and steel which is the main reason of reduction in the service life of RC structures strongly depends on the diffusion process of moisture and aggressive species. In this paper, the major and popular mathematical models of diffusion process in concrete are surveyed and investigated. Predominantly in these models, the coefficient of chloride diffusion into the concrete is assumed to be constant. Whereas, experimental records indicate that diffusion coefficient is a function of time. Subsequently, data analysis and comparisons between the existing analytical models for predicting the diffusion coefficient with the existing experimental database are carried out in this study. Clearly, these comparisons reveal that there are gaps between the existing mathematical models and previously recorded experimental results. Perhaps, these gaps may be interpreted as influence of the other affecting parameters on the diffusion coefficient such as temperature, aggregate size and relative humidity in addition to the water cement ratio. Accordingly, the existing mathematical models are not adequate enough to predict the diffusion coefficient precisely and further studies need to be performed.展开更多
This study aimed to investigate the cost impact of meeting the increase in freight demand by doubling the truck weight (AS 1 ), doubling the traffic volume (AS2), or legalizing a new-proposed-truck of 97-kip weigh...This study aimed to investigate the cost impact of meeting the increase in freight demand by doubling the truck weight (AS 1 ), doubling the traffic volume (AS2), or legalizing a new-proposed-truck of 97-kip weight instead of the currently legal 80-kip truck (AS3). The State of Michigan's average daily traffic database of year 2001 has been used as a case study. The study was applied only on the very common US Bridge with RC (reinforced concrete) deck over steel girder. Sampling criteria also includes the age of the bridges. The study covered the four-cost-impact categories provided by the NCHRP (National Cooperative Research Program). The current truck weight and double traffic volume (AS2) show the best scenario to meet the increase in freight demand. However, doubling the truck weight with the current traffic volume (AS 1) was the worst scenario. The use of the proposed 97-kip truck with the current traffic volume (AS3) compromises both, meeting the increase in freight demand and the cost impact.展开更多
In the field of disaster prevention mitigation and protection engineering,it is important to identify the mechanical behaviors of reinforced concrete(RC)under explosive load by simulation.A three dimensional beam-part...In the field of disaster prevention mitigation and protection engineering,it is important to identify the mechanical behaviors of reinforced concrete(RC)under explosive load by simulation.A three dimensional beam-particle model(BPM),which is suitable to simulate the fracture process of RC under explosive load,has been developed in the frame of discrete element method (DEM).In this model,only the elastic deformations of beams between concrete particles were considered.The matrix displacement method(MDM)was employed to describe the relationship between the deformation and forces of the beam.A fracture criterion expressed by stress was suggested to identify the state of the beam.A BPM for steel bar,which can simulate the deformation of steel bar under high loading rate,was also developed based on the Cowper-Symonds theory.A program has been coded using C++language.Experiments of RC slab under explosive load were carried out using the program.Good agreement was achieved between the experimental and simulated results.It is indicated that the proposed theoretical model can well simulate the fracture characteristics of RC slab under explosive load such as blasting pit formation,cracks extension, spallation formation,etc.展开更多
In this paper, we introduce and discuss the robustness of contextuality(Ro C) R_C(e) and the contextuality cost C(e) of an empirical model e. The following properties of them are proved.(i) An empirical model ...In this paper, we introduce and discuss the robustness of contextuality(Ro C) R_C(e) and the contextuality cost C(e) of an empirical model e. The following properties of them are proved.(i) An empirical model e is contextual if and only if R_C(e) > 0;(ii) the Ro C function R_C is convex, lower semi-continuous and un-increasing under an affine mapping on the set E M of all empirical models;(iii) e is non-contextual if and only if C(e) = 0;(iv) e is contextual if and only if C(e) > 0;(v) e is strongly contextual if and only if C(e) = 1. Also, a relationship between RC(e) and C(e) is obtained. Lastly, the Ro C of three empirical models is computed and compared. Especially, the Ro C of the PR boxes is obtained and the supremum 0.5 is found for the Ro C of all no-signaling type(2, 2, 2) empirical models.展开更多
文摘Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.
文摘Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, its force behavior, ductility and failure mechanism under vertical and horizontal loads are studied. The results show that loading bearing and seismic behavior of transfer story structure with steel reinforced concrete beam and basement column is good. The relative design suggestion is put forward.
基金Project(50908082) supported by the National Natural Science Foundation of ChinaProject(2009ZK3111) supported by the Science and Technology Department of Hunan Province,China
文摘With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.
基金Supported by Visiting Scholar Foundaion of Key Lab. in University and National Natural Science Foundation of China(5 0 0 780 0 9)
文摘With the method of neural network, the processes of fatigue stiffness decreasing and deflection increasing of reinforced concrete beams under cyclic loading were simulated. The simulating system was built with the given experimental data. The prediction model of neural network structure and the corresponding parameters were obtained. The precision and results were satisfied and could be used to investigate the fatigue properties of reinforced concrete beams in complex environment and under repeating loads.
文摘Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.
文摘Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor have been done on this new kind of floor system in this paper. The experiment results show that the floor system has good mechanical property such as high bearing capacity, big rigidity and good tensility. A theoretical method is presented in this paper that the stiffening-ribbed-hollow-pipe girderless floor can be analyzed by being converted equivalently to orthotropic solid slab. It is indicated that the method is correct and reasonable according to the contrast between theoretical calculated results and experimental measured results. The theoretical results coincide with the measured results well.
文摘The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repaired bridge is carried out. The diagnosis enables us to locate and detect the damage in a reinforced concrete bridge. Thus, developments of analytical predictions have been checked by modal testing techniques. Besides, the FTCS (finite time centered space) scheme is developed to solve the set of equations which can easily handle finite element matrices of a bridge model. It is shown in this study that the method is applied to detect damages as well as existing cracks in real time of a repaired bridge. To check the efficiency of the method, the repaired bridge of OuedOumazer in Algeria has been selected. It is proven that identification methods have been able to detect the exact location of damage areas to be corrected avoiding the inaccuracy from the finite element model for the mass, stiffness and loading.
文摘Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety issues. Degradation of both concrete and steel which is the main reason of reduction in the service life of RC structures strongly depends on the diffusion process of moisture and aggressive species. In this paper, the major and popular mathematical models of diffusion process in concrete are surveyed and investigated. Predominantly in these models, the coefficient of chloride diffusion into the concrete is assumed to be constant. Whereas, experimental records indicate that diffusion coefficient is a function of time. Subsequently, data analysis and comparisons between the existing analytical models for predicting the diffusion coefficient with the existing experimental database are carried out in this study. Clearly, these comparisons reveal that there are gaps between the existing mathematical models and previously recorded experimental results. Perhaps, these gaps may be interpreted as influence of the other affecting parameters on the diffusion coefficient such as temperature, aggregate size and relative humidity in addition to the water cement ratio. Accordingly, the existing mathematical models are not adequate enough to predict the diffusion coefficient precisely and further studies need to be performed.
基金authors gratefully acknowledge funding and support provided by NSF (National Science Foundation) (CMMI- 1100742) and NCTSPM (National Centre for Transportation Systems Productivity and Management).
文摘This study aimed to investigate the cost impact of meeting the increase in freight demand by doubling the truck weight (AS 1 ), doubling the traffic volume (AS2), or legalizing a new-proposed-truck of 97-kip weight instead of the currently legal 80-kip truck (AS3). The State of Michigan's average daily traffic database of year 2001 has been used as a case study. The study was applied only on the very common US Bridge with RC (reinforced concrete) deck over steel girder. Sampling criteria also includes the age of the bridges. The study covered the four-cost-impact categories provided by the NCHRP (National Cooperative Research Program). The current truck weight and double traffic volume (AS2) show the best scenario to meet the increase in freight demand. However, doubling the truck weight with the current traffic volume (AS 1) was the worst scenario. The use of the proposed 97-kip truck with the current traffic volume (AS3) compromises both, meeting the increase in freight demand and the cost impact.
基金supported by the National Natural Science Foundation of China(Grant No.51044003)the National Basic Research Program of China("973"Project)(Grant No.2007CB714104)
文摘In the field of disaster prevention mitigation and protection engineering,it is important to identify the mechanical behaviors of reinforced concrete(RC)under explosive load by simulation.A three dimensional beam-particle model(BPM),which is suitable to simulate the fracture process of RC under explosive load,has been developed in the frame of discrete element method (DEM).In this model,only the elastic deformations of beams between concrete particles were considered.The matrix displacement method(MDM)was employed to describe the relationship between the deformation and forces of the beam.A fracture criterion expressed by stress was suggested to identify the state of the beam.A BPM for steel bar,which can simulate the deformation of steel bar under high loading rate,was also developed based on the Cowper-Symonds theory.A program has been coded using C++language.Experiments of RC slab under explosive load were carried out using the program.Good agreement was achieved between the experimental and simulated results.It is indicated that the proposed theoretical model can well simulate the fracture characteristics of RC slab under explosive load such as blasting pit formation,cracks extension, spallation formation,etc.
基金supported by the National Natural Science Foundation of China(Grant Nos.1137101211401359+1 种基金11471200 and 11571213)the Fundamental Research Funds for the Central Universities(Grant No.GK201301007)
文摘In this paper, we introduce and discuss the robustness of contextuality(Ro C) R_C(e) and the contextuality cost C(e) of an empirical model e. The following properties of them are proved.(i) An empirical model e is contextual if and only if R_C(e) > 0;(ii) the Ro C function R_C is convex, lower semi-continuous and un-increasing under an affine mapping on the set E M of all empirical models;(iii) e is non-contextual if and only if C(e) = 0;(iv) e is contextual if and only if C(e) > 0;(v) e is strongly contextual if and only if C(e) = 1. Also, a relationship between RC(e) and C(e) is obtained. Lastly, the Ro C of three empirical models is computed and compared. Especially, the Ro C of the PR boxes is obtained and the supremum 0.5 is found for the Ro C of all no-signaling type(2, 2, 2) empirical models.