We calculate Wigner function, tomogram of the pair coherent state by using its Sehmidt decomposition in the coherent state representation. It turns out that the Wigner function can be seen as the quantum entanglement ...We calculate Wigner function, tomogram of the pair coherent state by using its Sehmidt decomposition in the coherent state representation. It turns out that the Wigner function can be seen as the quantum entanglement (QE) between two two-variable Hermite polynomials (TVHP) and the tomogram is further simplified as QE of two single-variable Hermite polynomials. The Husimi function of pair coherent state is also calculated.展开更多
Quillen proved that if a Hermitian bihomogeneous polynomial is strictly positive on the unit sphere, then repeated multiplication of the standard sesquilinear form to this polynomial eventually results in a sum of Her...Quillen proved that if a Hermitian bihomogeneous polynomial is strictly positive on the unit sphere, then repeated multiplication of the standard sesquilinear form to this polynomial eventually results in a sum of Hermitian squares. Catlin-D'Angelo and Varolin deduced this positivstellensatz of Quillen from the eventual positive-definiteness of an associated integral operator. Their arguments involve asymptotic expansions of the Bergman kernel. The goal of this article is to give an elementary proof of the positive-definiteness of this integral operator.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.10775097 and 10874174the Research Foundation of the Education Department of Jiangxi Province
文摘We calculate Wigner function, tomogram of the pair coherent state by using its Sehmidt decomposition in the coherent state representation. It turns out that the Wigner function can be seen as the quantum entanglement (QE) between two two-variable Hermite polynomials (TVHP) and the tomogram is further simplified as QE of two single-variable Hermite polynomials. The Husimi function of pair coherent state is also calculated.
文摘Quillen proved that if a Hermitian bihomogeneous polynomial is strictly positive on the unit sphere, then repeated multiplication of the standard sesquilinear form to this polynomial eventually results in a sum of Hermitian squares. Catlin-D'Angelo and Varolin deduced this positivstellensatz of Quillen from the eventual positive-definiteness of an associated integral operator. Their arguments involve asymptotic expansions of the Bergman kernel. The goal of this article is to give an elementary proof of the positive-definiteness of this integral operator.