Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
Mathematical investigations of the dynamic response of buried systems to thermal and/or electromagnetic stimulation continues to be of great importance. The size of such systems can range from the microelectronic scal...Mathematical investigations of the dynamic response of buried systems to thermal and/or electromagnetic stimulation continues to be of great importance. The size of such systems can range from the microelectronic scale to large underground structures. Stimulation can occur from unwanted electromagnetic signals entering the buried system, and for assessing the operating state of a buried system that is not usually physically accessible. In both cases detecting damage or status can be accomplished by examining the time dependence of the resultant surface temperature. This study shows how to determine surface temperature for a hypothetical thermal-plus-systems using a combination of Fourier-space and Laplace-time transform techniques. The hypothetical model can be generalized from scaling the relevant relationships.展开更多
Existing analytical methods of buried steel pipelines subjected to active strike-slip faults depended on a number of simplifications.To study the failure mechanism more accurately,a refined strain analytical methodolo...Existing analytical methods of buried steel pipelines subjected to active strike-slip faults depended on a number of simplifications.To study the failure mechanism more accurately,a refined strain analytical methodology was proposed,taking the nonlinear characteristics of soil-pipeline interaction and pipe steel into account.Based on the elastic-beam and beam-on-elastic-foundation theories,the position of pipe potential destruction and the strain and deformation distributions along the pipeline were derived.Compared with existing analytical methods and three-dimensional nonlinear finite element analysis,the maximum axial total strains of pipe from the analytical methodology presented are in good agreement with the finite element results at small and intermediate fault movements and become gradually more conservative at large fault displacements.The position of pipe potential failure and the deformation distribution along the pipeline are fairly consistent with the finite element results.展开更多
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
文摘Mathematical investigations of the dynamic response of buried systems to thermal and/or electromagnetic stimulation continues to be of great importance. The size of such systems can range from the microelectronic scale to large underground structures. Stimulation can occur from unwanted electromagnetic signals entering the buried system, and for assessing the operating state of a buried system that is not usually physically accessible. In both cases detecting damage or status can be accomplished by examining the time dependence of the resultant surface temperature. This study shows how to determine surface temperature for a hypothetical thermal-plus-systems using a combination of Fourier-space and Laplace-time transform techniques. The hypothetical model can be generalized from scaling the relevant relationships.
基金Project(50439010) supported by the National Natural Science Foundation of ChinaProject(DUT10ZD201) supported by the Fundamental Research Funds for the Central Universities in China
文摘Existing analytical methods of buried steel pipelines subjected to active strike-slip faults depended on a number of simplifications.To study the failure mechanism more accurately,a refined strain analytical methodology was proposed,taking the nonlinear characteristics of soil-pipeline interaction and pipe steel into account.Based on the elastic-beam and beam-on-elastic-foundation theories,the position of pipe potential destruction and the strain and deformation distributions along the pipeline were derived.Compared with existing analytical methods and three-dimensional nonlinear finite element analysis,the maximum axial total strains of pipe from the analytical methodology presented are in good agreement with the finite element results at small and intermediate fault movements and become gradually more conservative at large fault displacements.The position of pipe potential failure and the deformation distribution along the pipeline are fairly consistent with the finite element results.