Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the softw...Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.展开更多
This work deals with an application in parametric modeling of problems regarding pipelines buried in static system, written in C++ using ObjectARX functions. The application is fully integrated with AutoCAD through ...This work deals with an application in parametric modeling of problems regarding pipelines buried in static system, written in C++ using ObjectARX functions. The application is fully integrated with AutoCAD through saproms.dll and saproms.arx libraries where the stages of pre-processing, processing and post-processing are done in AutoCAD sotlware environment itself without having to export data to another processing environment. The analysis processing is done by functions whose algorithms are based on the solution of the coupling between the FEM (finite element method) and the BEM (boundary element method). The representation of the homogeneous pipeline is made by the FEM using a finite element in the form of a cylindrical panel called CYS (cylindrical shell), developed from the homogeneous isotropic model proposed initially by Djoudi Bahai, who uses the philosophy of the assumed deformation model (assumed strain based model). The soil is taken to be a continuum infinite or semi-infinite elastic solid patterned by BEM where special boundary elements are proposed with curved surface or curved edges to represent the soil-structure interaction mainly in the areas of contact with the pipeline.展开更多
基金Projects(50909025,51179035) supported by the National Natural Science Foundation of ChinaProject(HEUCFZ1003) supported by the Fundamental Research Funds for Central Universities of China
文摘Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.
文摘This work deals with an application in parametric modeling of problems regarding pipelines buried in static system, written in C++ using ObjectARX functions. The application is fully integrated with AutoCAD through saproms.dll and saproms.arx libraries where the stages of pre-processing, processing and post-processing are done in AutoCAD sotlware environment itself without having to export data to another processing environment. The analysis processing is done by functions whose algorithms are based on the solution of the coupling between the FEM (finite element method) and the BEM (boundary element method). The representation of the homogeneous pipeline is made by the FEM using a finite element in the form of a cylindrical panel called CYS (cylindrical shell), developed from the homogeneous isotropic model proposed initially by Djoudi Bahai, who uses the philosophy of the assumed deformation model (assumed strain based model). The soil is taken to be a continuum infinite or semi-infinite elastic solid patterned by BEM where special boundary elements are proposed with curved surface or curved edges to represent the soil-structure interaction mainly in the areas of contact with the pipeline.