Although extensive analyses of road segments and intersections located in urban road networks have examined the role of many factors that contribute to the frequency and severity of crashes, the explicit relationship ...Although extensive analyses of road segments and intersections located in urban road networks have examined the role of many factors that contribute to the frequency and severity of crashes, the explicit relationship between street pattern characteristics and traffic safety remains underexplored. Based on a zone-based Hong Kong database, the Space Syntax was used to quantify the topological characteristics of street patterns and investigate the role of street patterns and zone-related factors in zone-based traffic safety analysis. A joint probability model was adopted to analyze crash frequency and severity in an integrated modeling framework and the maximum likelihood estimation method was used to estimate the parameters. In addition to the characteristics of street patterns, speed, road geometry, land-use patterns, and temporal factors were considered. The vehicle hours was also included as an exposure proxy in the model to make crash frequency predictions. The results indicate that the joint probability model can reveal the relationship between zone-based traffic safety and various other factors, and that street pattern characteristics play an important role in crash frequency prediction.展开更多
In snow-icy road environment, the survey data indicate that the largest decrease in traffic flow running characters occurs when snow and ice begin to accumulate on the road surface. Saturation flow is decreased by 16%...In snow-icy road environment, the survey data indicate that the largest decrease in traffic flow running characters occurs when snow and ice begin to accumulate on the road surface. Saturation flow is decreased by 16% , speed is decreased by 30% , and start-up lost time is increased by 27%. Based on the signal control theory of HCM and Webster, the character values of traffic flow in different urban road environments were investigated, and the evolvement regularity of signal control parameters such as cycle, split, green time, offset, yellow time and red time in snow-icy road environment was analyzed. The impact factors and the changes in the scope of signal control parameters were achieved. Simulation results and practical application show that the signal control plan of road enviromnent without snow and ice will increase the vehicle delay, stop length and traffic congestion in snow-icy road environment. Thus, the traffic signal control system should address a suitable signal control plan based on different road environments.展开更多
基金Project(71301083)supported by the National Natural Science Foundation of ChinaProject(2012AA112305)supported by the National High-Tech Research and Development Program of China+1 种基金Project(2012CB725405)supported by the National Basic Research Program of ChinaProject(17208614)supported by the Research Grants Council of the Hong Kong Special Administrative Region,China
文摘Although extensive analyses of road segments and intersections located in urban road networks have examined the role of many factors that contribute to the frequency and severity of crashes, the explicit relationship between street pattern characteristics and traffic safety remains underexplored. Based on a zone-based Hong Kong database, the Space Syntax was used to quantify the topological characteristics of street patterns and investigate the role of street patterns and zone-related factors in zone-based traffic safety analysis. A joint probability model was adopted to analyze crash frequency and severity in an integrated modeling framework and the maximum likelihood estimation method was used to estimate the parameters. In addition to the characteristics of street patterns, speed, road geometry, land-use patterns, and temporal factors were considered. The vehicle hours was also included as an exposure proxy in the model to make crash frequency predictions. The results indicate that the joint probability model can reveal the relationship between zone-based traffic safety and various other factors, and that street pattern characteristics play an important role in crash frequency prediction.
基金Sponsored by the National Basic Research and Development Program of China(Grant No.2006CB705505) Research Fund for the Doctoral Program of Higher Education of China(Grant No.200802131012)
文摘In snow-icy road environment, the survey data indicate that the largest decrease in traffic flow running characters occurs when snow and ice begin to accumulate on the road surface. Saturation flow is decreased by 16% , speed is decreased by 30% , and start-up lost time is increased by 27%. Based on the signal control theory of HCM and Webster, the character values of traffic flow in different urban road environments were investigated, and the evolvement regularity of signal control parameters such as cycle, split, green time, offset, yellow time and red time in snow-icy road environment was analyzed. The impact factors and the changes in the scope of signal control parameters were achieved. Simulation results and practical application show that the signal control plan of road enviromnent without snow and ice will increase the vehicle delay, stop length and traffic congestion in snow-icy road environment. Thus, the traffic signal control system should address a suitable signal control plan based on different road environments.