With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improv...With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.展开更多
In order to find a method which can describe the passenger flow dynamical distribution of urban mass transit during interval interrupted operation,an urban railway network topology model was built based on the travel ...In order to find a method which can describe the passenger flow dynamical distribution of urban mass transit during interval interrupted operation,an urban railway network topology model was built based on the travel path dual graph by considering interchange,crowd and congestion.The breadth first valid travel path search algorithm is proposed,and the multipath passenger flow distribution logit model is improved.According to the characteristics of passengers under the interruption condition,the distribution rules of different types of passenger flow are proposed.The method of calculating the aggregation number of station is proposed for the case of insufficient transport capacity.Finally,the passenger flow of Beijing urban mass transit is simulated for the case study.The results show that the relative error of most of transfer passenger flow is below 10%.The proposed model and algorithm can accurately assign the daily passenger flow,which provides a theoretical basis for urban mass transit emergency management and decision.展开更多
基金supported by National Natural Science Foundation of China(Nos.51476073,51266004)Natural Science Foundation of Gansu Province(No.138RJZA199).
文摘With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.
基金The National Natural Science Foundation of China(No.61374157)the Science and Technology Project of the Education Department of Jiangxi Province(No.GJJ151524)
文摘In order to find a method which can describe the passenger flow dynamical distribution of urban mass transit during interval interrupted operation,an urban railway network topology model was built based on the travel path dual graph by considering interchange,crowd and congestion.The breadth first valid travel path search algorithm is proposed,and the multipath passenger flow distribution logit model is improved.According to the characteristics of passengers under the interruption condition,the distribution rules of different types of passenger flow are proposed.The method of calculating the aggregation number of station is proposed for the case of insufficient transport capacity.Finally,the passenger flow of Beijing urban mass transit is simulated for the case study.The results show that the relative error of most of transfer passenger flow is below 10%.The proposed model and algorithm can accurately assign the daily passenger flow,which provides a theoretical basis for urban mass transit emergency management and decision.