期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
信息技术发展对城市交通客流量替代作用的定量研究 被引量:13
1
作者 刘红 真虹 《系统工程理论与实践》 EI CSCD 北大核心 2000年第9期78-82,98,共6页
在分析研究信息技术的发展和应用对城市交通客流量具有替代作用的基础上 ,构造了两者之间的数学模型 ,并给出了利用多项式最小二乘拟合和方差分析法求解替代函数的一般过程 .利用上述模型和方法 ,本文就上海市 1989年至 1997年信息技术... 在分析研究信息技术的发展和应用对城市交通客流量具有替代作用的基础上 ,构造了两者之间的数学模型 ,并给出了利用多项式最小二乘拟合和方差分析法求解替代函数的一般过程 .利用上述模型和方法 ,本文就上海市 1989年至 1997年信息技术的发展和应用对城市交通客流量的替代函数进行了拟合 。 展开更多
关键词 信息技术 定量分析 城市交通客流量 数字模型
原文传递
Combination forecast for urban rail transit passenger flow based on fuzzy information granulation and CPSO-LS-SVM 被引量:3
2
作者 TANG Min-an ZHANG Kai LIU Xing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期32-41,共10页
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu... In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future. 展开更多
关键词 urban rail transit passenger flow forecast least squares support vector machine(LS-SVM) fuzzy information granulation chaos particle swarm optimization(CPSO)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部