期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
人地关系视角下城市健康状态评估框架与实践 被引量:2
1
作者 王楠 朱佩娟 +2 位作者 邓凌云 邓方荣 王学栋 《现代城市研究》 北大核心 2021年第8期115-124,共10页
在生态文明建设与国土空间规划目标要求之下,城市健康状态的内涵及其整体评估逻辑的科学认知,对提升城市体检工作科学性和有效性具有重要意义,也有利于国土空间规划与治理的精准施策。文章在厘清人地关系视角下的城市健康状态内涵的基础... 在生态文明建设与国土空间规划目标要求之下,城市健康状态的内涵及其整体评估逻辑的科学认知,对提升城市体检工作科学性和有效性具有重要意义,也有利于国土空间规划与治理的精准施策。文章在厘清人地关系视角下的城市健康状态内涵的基础上,明确城市健康状态评估对象、内容指标框架、评估尺度与工作框架,以长沙市为研究案例开展实证研究,主要研究结论如下:(1)城市健康状态是由城市硬要素与软要素构成的复杂城市系统在不同空间尺度上运行状态的健康表征,从人地关系视角出发,城市健康状态蕴含在物质环境、社会生活和精神文化三大子系统所构建的“人-地”复合巨系统中,是“人”与“人”、“人”与“地”相互交互的状态与过程,具有人地互动性、动静结合性和多维复杂性特征。(2)可将城市健康状态表征为关于生态宜居、文化旅游、交通便捷、生活舒适、多元包容、安全韧性和城市活力的函数,并构建总体的评估指标框架,空间尺度可分为社区、街道、区、市等不同等级的空间评估单元。(3)从长沙市的实证看,基于人地关系视角,开展市-区-街道三级尺度城市健康状态评估,可为探索“市-区-街道”三级协同的城市健康状态评估工作机制,构建“多尺度评估-多尺度比较-问题清单-治理项目库-再体检”的工作闭环奠定基础。 展开更多
关键词 人地关系 城市健康状态 评估框架 长沙
下载PDF
Data mining-based study on sub-mentally healthy state among residents in eight provinces and cities in China 被引量:3
2
作者 Hongmei Ni Xuming Yang +3 位作者 Chengquan Fang Yingying Guo Mingyue Xu Yumin He 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2014年第4期511-517,共7页
OBJECTIVE: To apply data mining methods to research on the state of sub-mental health among residents in eight provinces and cities in China and to mine latent knowledge about many conditions through data mining and a... OBJECTIVE: To apply data mining methods to research on the state of sub-mental health among residents in eight provinces and cities in China and to mine latent knowledge about many conditions through data mining and analysis of data on 3970 sub-mentally healthy individuals selected from 13385 relevant question naires.METHODS: The strategic tree algorithm was used to identify the main mani festations of the state of sub-mental health. The backpropogation artificial neural network was used to analyze the main mani festations of sub-healthy mental states of three different degrees. A sub-mental health evaluation model was then established to achieve predictive evaluationresults.RESULTS: Using classifications from the Scale of Chinese Sub-healthy State, the main manifestations of sub-mental health selected using the strate gictree were F1101(Do you lack peace of mind?),F1102(Are you easily nervous when something comes up?), and F1002(Do you often sigh?). The relative intensity of manifestations of sub-mental health was highest for F1101, followed by F1102,and then F1002. Through study of the neural network, better differentiation could be made between moderate and severe and between mild and severe states of sub-mental health. The differentiation between mild and moderate sub-mental health states was less apparent. Additionally, the sub-mental health state evaluation model, which could be used to predict states of sub-mental health of different individuals, was established using F1101, F1102, F1002, and the mental self-assessment totals core.CONCLUSION: The main manifestations of the state of sub-mental health can be discovered using data mining methods to research and analyze the latent laws and knowledge hidden in research evidence on the state of sub-mental health. The state of sub-mental health of different individuals can be rapidly predicted using the model established here.This can provide a basis for assessment and intervention for sub-mental health. It can also replace the relatively outdated approaches to research on sub-health in the technical era of information and digitization by combining the study of states of sub-mental health with information techniques and by further quantifying the relevant information. 展开更多
关键词 Questionnaires Mental health Data mining Strategictree Artificial neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部