A system dynamics approach to urban water demand forecasting was developed based on the analysis of urban water resources system, which was characterized by multi-feedback and nonlinear interactions among sys-tem elem...A system dynamics approach to urban water demand forecasting was developed based on the analysis of urban water resources system, which was characterized by multi-feedback and nonlinear interactions among sys-tem elements. As an example, Tianjin water resources system dynamic model was set up to forecast water resources demand of the planning years. The practical verification showed that the relative error was lower than 10%. Fur-thermore, through the comparison and analysis of the simulation results under different development modes pre-sented in this paper, the forecasting results of the water resources demand of Tianjin was achieved based on sustain-able utilization strategy of water resources.展开更多
To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the ...To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.展开更多
Phosphorus and nitrogen are known causes of eutrophication in rivers, lakes streams and estuaries. The sources of these nutrients are diverse and they include chemical fertilizers, CAFOs (Confmed Animal Feeding Opera...Phosphorus and nitrogen are known causes of eutrophication in rivers, lakes streams and estuaries. The sources of these nutrients are diverse and they include chemical fertilizers, CAFOs (Confmed Animal Feeding Operations), land application of animal and municipal as well as industrial wastewaters. Application of manure slurries to crop land beyond allowable limits could result in high levels of phosphorus and nitrogen in runoff that negatively impact aquatic animals. Municipal wastewater treatment plants are setup to remove these nutrients from domestic and industrial wastewater through a network of treatment processes. Controlling the discharge of phosphorus and nitrogen in wastewater is a key factor in preventing eutrophication. This paper presents work done to enhance a chemical precipitation process that removes over 90% of dissolved phosphorus and nearly 20% of dissolved nitrogen from both synthetic and municipal wastewaters. The objective of the study is to remove nitrogen and phosphorus from wastewater as dittmarite, a value-added mineral fertilizer found in nature. A laboratory procedure was developed that generated significant quantities of dittmarite from various wastewaters. Pure dittrnarite contains nitrogen, phosphorus and magnesium in approximate molar ratios of 1:1.2:1.2 that can support plant growth. It is produced as a wet precipitate from chemical reactions that occur in the wastewater treatment process; it can be dried for proper handling and utilization. Municipal wastewater treatment plants, high volume fish producers, CAFOs and individual rural homeowners could all benefit from this technology for on-site removal of nitrogen and phosphorus from produced wastewaters.展开更多
In this study, a in vessel aerobic composting method is adopted to investigate the variation rules of various evaluation parameters (temperature, moisture content, pH, organic matter, water soluble ammonia nitrogen, ...In this study, a in vessel aerobic composting method is adopted to investigate the variation rules of various evaluation parameters (temperature, moisture content, pH, organic matter, water soluble ammonia nitrogen, water soluble nitrate nitrogen and germination index) in cocomposting of municipal sludge, kitchen waste and water hyacinth at different proportions. The results show that, in composting, the parameters of moisture content, pH, water soluble ammonia nitrogen and water soluble nitrate nitrogen demonstrate marked dynamic change rules during composting process; the temperature of three groups of compost materials rapidly rise to above 55 ~C within 96h, and last for 3 - 7d, meeting the harmless requirements, and their organic matter degradation rate excess 30%, the GI index is higher than 83%, in line with the requirements on maturity, which proves that the co-composting of municipal sludge, kitchen waste and water hyacinth can realize harmlessness and resource reutilization after composting.展开更多
基金Supported by National Natural Science Foundation of China (No.50578108)Doctoral Programs Foundation of Ministry of Education of China (No.20050056016)+3 种基金National Key Program for Basic Research ( "973" Program, No.2007CB407306-1)Science and Technology Development Foundation of Tianjin (No.033113811 and No.05YFSYSF032)Educational Commission of Hebei Province (No.2008324)Tianjin Social Key Foundation (No.tjyy08-01-078).
文摘A system dynamics approach to urban water demand forecasting was developed based on the analysis of urban water resources system, which was characterized by multi-feedback and nonlinear interactions among sys-tem elements. As an example, Tianjin water resources system dynamic model was set up to forecast water resources demand of the planning years. The practical verification showed that the relative error was lower than 10%. Fur-thermore, through the comparison and analysis of the simulation results under different development modes pre-sented in this paper, the forecasting results of the water resources demand of Tianjin was achieved based on sustain-able utilization strategy of water resources.
基金The National Natural Science Foundation of China(No.51979040)。
文摘To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.
文摘Phosphorus and nitrogen are known causes of eutrophication in rivers, lakes streams and estuaries. The sources of these nutrients are diverse and they include chemical fertilizers, CAFOs (Confmed Animal Feeding Operations), land application of animal and municipal as well as industrial wastewaters. Application of manure slurries to crop land beyond allowable limits could result in high levels of phosphorus and nitrogen in runoff that negatively impact aquatic animals. Municipal wastewater treatment plants are setup to remove these nutrients from domestic and industrial wastewater through a network of treatment processes. Controlling the discharge of phosphorus and nitrogen in wastewater is a key factor in preventing eutrophication. This paper presents work done to enhance a chemical precipitation process that removes over 90% of dissolved phosphorus and nearly 20% of dissolved nitrogen from both synthetic and municipal wastewaters. The objective of the study is to remove nitrogen and phosphorus from wastewater as dittmarite, a value-added mineral fertilizer found in nature. A laboratory procedure was developed that generated significant quantities of dittmarite from various wastewaters. Pure dittrnarite contains nitrogen, phosphorus and magnesium in approximate molar ratios of 1:1.2:1.2 that can support plant growth. It is produced as a wet precipitate from chemical reactions that occur in the wastewater treatment process; it can be dried for proper handling and utilization. Municipal wastewater treatment plants, high volume fish producers, CAFOs and individual rural homeowners could all benefit from this technology for on-site removal of nitrogen and phosphorus from produced wastewaters.
文摘In this study, a in vessel aerobic composting method is adopted to investigate the variation rules of various evaluation parameters (temperature, moisture content, pH, organic matter, water soluble ammonia nitrogen, water soluble nitrate nitrogen and germination index) in cocomposting of municipal sludge, kitchen waste and water hyacinth at different proportions. The results show that, in composting, the parameters of moisture content, pH, water soluble ammonia nitrogen and water soluble nitrate nitrogen demonstrate marked dynamic change rules during composting process; the temperature of three groups of compost materials rapidly rise to above 55 ~C within 96h, and last for 3 - 7d, meeting the harmless requirements, and their organic matter degradation rate excess 30%, the GI index is higher than 83%, in line with the requirements on maturity, which proves that the co-composting of municipal sludge, kitchen waste and water hyacinth can realize harmlessness and resource reutilization after composting.