期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多级对比学习下的弱监督高分遥感影像城市固废堆场提取
1
作者 王继成 郭安嵋 +3 位作者 慎利 蓝天 徐柱 李志林 《测绘学报》 EI CSCD 北大核心 2024年第6期1212-1223,共12页
城市固体废物是城市化进程中的重要污染源,对城市生态环境和公共健康造成了巨大危害。高分影像固废堆场智能解译是实现自动排查,提升监测效率的核心和关键技术。基于深度学习的固废堆场自动提取方法严重依赖于获取成本高、制作难度大的... 城市固体废物是城市化进程中的重要污染源,对城市生态环境和公共健康造成了巨大危害。高分影像固废堆场智能解译是实现自动排查,提升监测效率的核心和关键技术。基于深度学习的固废堆场自动提取方法严重依赖于获取成本高、制作难度大的高质量像素级标注。为此,本文提出使用更易获取的影像级标注,利用影像自监督学习实现像素级固废堆场提取。围绕固废堆场的影像特征,本文方法在尺度对比约束下综合像素、影像两个层次的对比学习方法,对固废堆场的类别激活图细化和完善,并基于此生成高质量的固废堆场伪像素级标注,用于训练固废堆场提取模型。试验结果表明,本文方法在固废堆场提取的F 1值和IoU分数方面分别达到了71.58%和55.74%,显著优于所有对比方法。这说明利用多级对比学习的弱监督方法能够获得更加完整且准确的类别激活图,从而取得更高的固废堆场提取精度。 展开更多
关键词 城市固废堆场 高分辨率遥感影像 对比学习 弱监督信息提取 类别激活图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部