With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focu...With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes.展开更多
In the research of fractal cities, the fractal dimension is very important. It is used to describe the fractal character of the city. The authors have designed two approaches to calculate the fractal dimension by the ...In the research of fractal cities, the fractal dimension is very important. It is used to describe the fractal character of the city. The authors have designed two approaches to calculate the fractal dimension by the box-counting method through an example of Beijing, which are called the vector method and the grid method, respectively. The former calculates the fractal dimension through an intersecting analysis in ArcView; and the latter is carried out by programming in Matlab. They are compared from three aspects: the calculating process, the limits in use, and the results. As a result, the conclusion is made that there are merits and faults on both methods, and they should be chosen to use properly in practical situation.展开更多
基金Under the auspices of Major Project of National Social Science Foundation of China(No.13&ZD13027)National Science&Technology Pillar Program During 12th Five-year Plan Period(No.2012BAJ22B03-04)National Natural Science Foundation of China(No.41401164)
文摘With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes.
文摘In the research of fractal cities, the fractal dimension is very important. It is used to describe the fractal character of the city. The authors have designed two approaches to calculate the fractal dimension by the box-counting method through an example of Beijing, which are called the vector method and the grid method, respectively. The former calculates the fractal dimension through an intersecting analysis in ArcView; and the latter is carried out by programming in Matlab. They are compared from three aspects: the calculating process, the limits in use, and the results. As a result, the conclusion is made that there are merits and faults on both methods, and they should be chosen to use properly in practical situation.