城市无人机渗透作战中使用智能无人机执行隐蔽穿插、渗入和目标定位等任务,但其面临着城市环境复杂、空域限制等挑战。为了解决城市渗透背景下无人机的路径规划难题,提出了一种ATD-DBO(Adaptive T Distribution-Dung Beetle Optimizer)...城市无人机渗透作战中使用智能无人机执行隐蔽穿插、渗入和目标定位等任务,但其面临着城市环境复杂、空域限制等挑战。为了解决城市渗透背景下无人机的路径规划难题,提出了一种ATD-DBO(Adaptive T Distribution-Dung Beetle Optimizer)驱动的无人机在不规则区域的渗透路径规划算法。首先,提出融合城市建筑物分布、岗哨位置以及无人机特性的无人机城市渗透模型。其次,提出了虫口混沌映射初始化种群、自适应t分布和动态变异策略扰动蜣螂位置和将非精英个体进行二次变异的ATD-DBO算法。最后,提出了一种融合城市实战不规则区域场景和打击意图的快速突进模型。实验证明,算法规划出的路径在有效避开岗哨位置的同时能够确保路径较短。展开更多
文摘城市无人机渗透作战中使用智能无人机执行隐蔽穿插、渗入和目标定位等任务,但其面临着城市环境复杂、空域限制等挑战。为了解决城市渗透背景下无人机的路径规划难题,提出了一种ATD-DBO(Adaptive T Distribution-Dung Beetle Optimizer)驱动的无人机在不规则区域的渗透路径规划算法。首先,提出融合城市建筑物分布、岗哨位置以及无人机特性的无人机城市渗透模型。其次,提出了虫口混沌映射初始化种群、自适应t分布和动态变异策略扰动蜣螂位置和将非精英个体进行二次变异的ATD-DBO算法。最后,提出了一种融合城市实战不规则区域场景和打击意图的快速突进模型。实验证明,算法规划出的路径在有效避开岗哨位置的同时能够确保路径较短。