Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land ...Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land cover and normalized difference vegetation index (NDVI) were discussed. The result of LST showed that the urban LST was evidently higher than the suburban one. The average urban LST was found to 4.5 ℃ and 9 ℃ higher than the suburban and outer suburban temperature, respectively, which demonstrated the prominent UHI effects in Beijing. Prominent negative correlation between LST and NDVI was found in the urban area, which suggested the low percent vegetation cover in the urban area was the main cause of the urban heat island.展开更多
To understand how temperature varies in urban Shanghai under the background of global climate change and how it is affected by urbanization, the Shanghai temperature responses to global warming were analyzed, and then...To understand how temperature varies in urban Shanghai under the background of global climate change and how it is affected by urbanization, the Shanghai temperature responses to global warming were analyzed, and then the temperature trends of urban and suburb stations under different climatic backgrounds were obtained. The urbanization effects on temperature were studied by comparing urban stations to suburb stations, the relationship between urbanization variables and temperature components were obtained, and observation data of surface and high level were combined to assess the contribution of urbanization effect. In the last part of the paper, the cause of urbanization effects on temperature was discussed. The results indicated: The long term change trend of Shanghai annual mean temperature is 1.31/100a from 1873 to 2004, the periods of 1921 – 1948 and 1979 – 2004 are warmer, and the 1979 – 2004 period is the warmest; compared to suburb stations, the representative urban station has slower decreases in the cool period and faster increases in the warm one; the urban and suburb temperatures have distinct differences resulting from urbanization and the differences are increasing by the year, with the difference of mean temperature and minimum temperature being the greatest in fall and that of maximum temperature being the largest in summer between the urban and suburban areas. The urbanization process accelerates the warming speed, with the minimum temperature being the most obvious; the urbanization effect contributes a 0.4°C increase in 1980s and 1.1°C in 1990s to the annual mean temperature.展开更多
The paper aims to investigate the potential of a water body to influence in lowering the warmth in the city of Sao Jose do Rio Preto, Brazil, due to the evaporative cooling effects. In order to verify its potential, t...The paper aims to investigate the potential of a water body to influence in lowering the warmth in the city of Sao Jose do Rio Preto, Brazil, due to the evaporative cooling effects. In order to verify its potential, three collecting points of temperature and humidity were placed in an urban area close to the municipal dam. The first one was placed on the dam margin, the second one, 50 m distant of the margin and, the third one, 100 m distant. The data were taken during December 2010 and then compared to the climate data of the Climate Station of CIIAGRO-Integrated Center of Agro Meteorological. The results show that the closer the collection point is to the water body, and the lower is the temperature variation. The humidity taxes verified at the closest point to the water body indicate values higher than those ones collected at the most distant point. The insertion of moisture through the water bodies in an urban environment demonstrated to be a strategy that improved the thermal conditions and has to be considered for urban planners to establish strategies of urban occupation.展开更多
In recent decades,it presents a more obvious temperature rise in urban area along with the global warming.City is generally the center of human society,so the study on urban temperature variation will be helpful to ou...In recent decades,it presents a more obvious temperature rise in urban area along with the global warming.City is generally the center of human society,so the study on urban temperature variation will be helpful to our city development planning that is to reduce urban warming.The study is also helpful to a more comprehensive understanding of the causes of climate warming,which could provide a theoretical support to the government to make more reasonable international energy policies.Local temperature rise has different mechanisms with the global warming:large quantities of artificial heat release from the energy consumption will stay in urban areas for a period of time,which will inevitably influence the short-term trend of the local temperature change.Based on that view,a structural thermodynamic model was established in this paper to investigate the effect of the artificial heat release on the urban local temperatures.In the model,the city environment was divided into Human,Local,Outer three blocks,and then the heat and temperatures of the blocks were analyzed based on the laws of thermodynamics.After that,the effect of artificial heat release in Human block on the local temperatures was clarified.The model shows that the artificial heat release has an approximately linearly promoting effect on the local temperature rise,and the more the heat release is,the stronger the effect is.In addition,a validation of that model was carried out based on some national statistical data.The data of temperatures and artificial heat release of some provincial capitals of China were analyzed with linear regression extrapolation method and Pearson correlation statistical method.The results show that in most capital cities,the temperature variations basically depend on the artificial heat release in a linear relationship,which usually becomes more apparent with the increase of the artificial heat release in both spatial and temporal dimensions.The conclusions of the statistics have good conformity with the model and the rationality of the model is verified.展开更多
Five windows such as white glass,Low-E glasses and intelligent glasses are employed for simulation of heating and cooling energy consumptions in five typical cities of China by the software TRNSYS 16.The result shows ...Five windows such as white glass,Low-E glasses and intelligent glasses are employed for simulation of heating and cooling energy consumptions in five typical cities of China by the software TRNSYS 16.The result shows that it is the most energy saving for the doubled glass when the VO 2 films are deposited on the inside surface of the outer pane.And it is 84.7% of energy saving compared with white glass.But the heating energy consumption is the highest.This is because the transition temperature of real intelligent glass is too high and the solar heat gain coefficient is very small when the glass is in the cold state.On this basis,the property of intelligent glass is improved from the theoretical level.The result shows that it can be the most effective way of energy saving when emissivity is 0,solar transmittance is 100% in the cold state;visible light transmittance is 100%,infrared and ultraviolet light transmission rate is 0 in the hot state.Because of the technology limitation,it is hard to lower the transition temperature to below 20℃.The transition temperature of the film should be lower and the emissivity higher as far as possible.展开更多
文摘Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land cover and normalized difference vegetation index (NDVI) were discussed. The result of LST showed that the urban LST was evidently higher than the suburban one. The average urban LST was found to 4.5 ℃ and 9 ℃ higher than the suburban and outer suburban temperature, respectively, which demonstrated the prominent UHI effects in Beijing. Prominent negative correlation between LST and NDVI was found in the urban area, which suggested the low percent vegetation cover in the urban area was the main cause of the urban heat island.
文摘To understand how temperature varies in urban Shanghai under the background of global climate change and how it is affected by urbanization, the Shanghai temperature responses to global warming were analyzed, and then the temperature trends of urban and suburb stations under different climatic backgrounds were obtained. The urbanization effects on temperature were studied by comparing urban stations to suburb stations, the relationship between urbanization variables and temperature components were obtained, and observation data of surface and high level were combined to assess the contribution of urbanization effect. In the last part of the paper, the cause of urbanization effects on temperature was discussed. The results indicated: The long term change trend of Shanghai annual mean temperature is 1.31/100a from 1873 to 2004, the periods of 1921 – 1948 and 1979 – 2004 are warmer, and the 1979 – 2004 period is the warmest; compared to suburb stations, the representative urban station has slower decreases in the cool period and faster increases in the warm one; the urban and suburb temperatures have distinct differences resulting from urbanization and the differences are increasing by the year, with the difference of mean temperature and minimum temperature being the greatest in fall and that of maximum temperature being the largest in summer between the urban and suburban areas. The urbanization process accelerates the warming speed, with the minimum temperature being the most obvious; the urbanization effect contributes a 0.4°C increase in 1980s and 1.1°C in 1990s to the annual mean temperature.
文摘The paper aims to investigate the potential of a water body to influence in lowering the warmth in the city of Sao Jose do Rio Preto, Brazil, due to the evaporative cooling effects. In order to verify its potential, three collecting points of temperature and humidity were placed in an urban area close to the municipal dam. The first one was placed on the dam margin, the second one, 50 m distant of the margin and, the third one, 100 m distant. The data were taken during December 2010 and then compared to the climate data of the Climate Station of CIIAGRO-Integrated Center of Agro Meteorological. The results show that the closer the collection point is to the water body, and the lower is the temperature variation. The humidity taxes verified at the closest point to the water body indicate values higher than those ones collected at the most distant point. The insertion of moisture through the water bodies in an urban environment demonstrated to be a strategy that improved the thermal conditions and has to be considered for urban planners to establish strategies of urban occupation.
基金supported by the Knowledge Innovation Project of The Chinese Academy of Sciences(Grant No. KGCX2-YW-356)
文摘In recent decades,it presents a more obvious temperature rise in urban area along with the global warming.City is generally the center of human society,so the study on urban temperature variation will be helpful to our city development planning that is to reduce urban warming.The study is also helpful to a more comprehensive understanding of the causes of climate warming,which could provide a theoretical support to the government to make more reasonable international energy policies.Local temperature rise has different mechanisms with the global warming:large quantities of artificial heat release from the energy consumption will stay in urban areas for a period of time,which will inevitably influence the short-term trend of the local temperature change.Based on that view,a structural thermodynamic model was established in this paper to investigate the effect of the artificial heat release on the urban local temperatures.In the model,the city environment was divided into Human,Local,Outer three blocks,and then the heat and temperatures of the blocks were analyzed based on the laws of thermodynamics.After that,the effect of artificial heat release in Human block on the local temperatures was clarified.The model shows that the artificial heat release has an approximately linearly promoting effect on the local temperature rise,and the more the heat release is,the stronger the effect is.In addition,a validation of that model was carried out based on some national statistical data.The data of temperatures and artificial heat release of some provincial capitals of China were analyzed with linear regression extrapolation method and Pearson correlation statistical method.The results show that in most capital cities,the temperature variations basically depend on the artificial heat release in a linear relationship,which usually becomes more apparent with the increase of the artificial heat release in both spatial and temporal dimensions.The conclusions of the statistics have good conformity with the model and the rationality of the model is verified.
文摘Five windows such as white glass,Low-E glasses and intelligent glasses are employed for simulation of heating and cooling energy consumptions in five typical cities of China by the software TRNSYS 16.The result shows that it is the most energy saving for the doubled glass when the VO 2 films are deposited on the inside surface of the outer pane.And it is 84.7% of energy saving compared with white glass.But the heating energy consumption is the highest.This is because the transition temperature of real intelligent glass is too high and the solar heat gain coefficient is very small when the glass is in the cold state.On this basis,the property of intelligent glass is improved from the theoretical level.The result shows that it can be the most effective way of energy saving when emissivity is 0,solar transmittance is 100% in the cold state;visible light transmittance is 100%,infrared and ultraviolet light transmission rate is 0 in the hot state.Because of the technology limitation,it is hard to lower the transition temperature to below 20℃.The transition temperature of the film should be lower and the emissivity higher as far as possible.