Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land ...Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land cover and normalized difference vegetation index (NDVI) were discussed. The result of LST showed that the urban LST was evidently higher than the suburban one. The average urban LST was found to 4.5 ℃ and 9 ℃ higher than the suburban and outer suburban temperature, respectively, which demonstrated the prominent UHI effects in Beijing. Prominent negative correlation between LST and NDVI was found in the urban area, which suggested the low percent vegetation cover in the urban area was the main cause of the urban heat island.展开更多
The 2003-006 observations were utilized to analyze the surface characteristics of summer land-sea breezes along the coastland of Guangxi and the Weather Research and Forecast model was applied to simulate the breeze s...The 2003-006 observations were utilized to analyze the surface characteristics of summer land-sea breezes along the coastland of Guangxi and the Weather Research and Forecast model was applied to simulate the breeze structure on August 1-2, 2006. Results show that 1) the intensity and distributions of the breezes reproduced from improved urban underlying surface were close to observations. In the daytime the coastwise urban band was a convergent belt of sea breeze, corresponding to the centers of torrential rains; in the nighttime hours the surface of the Gulf of Tonkin (the Vietnamese name) or the Northern Bay (the Chinese name) acted as a convergent zone of land breezes, likely to produce convective cloud cluster; 2) the experiment on urbanization showed the heat island effect enhancing (weakening) the sea (land) breeze development. Furthermore, the heat island effect mitigated the atmospheric cooling via radiation over the cities in the night, weakening sinking motion correspondingly, thereby suppressing the dominant factor responsible for the steady development of temperature inversion. As a result, the inversion vigor was reduced greatly, but nevertheless no strong effect of the decreased subsidence was found upon the inversion height.展开更多
The cooling effects of urban green vegetation cover, which can help decrease LST (land surface temperature) in urban area. When air temperature decreases, the electricity consumption of household will also mitigate ...The cooling effects of urban green vegetation cover, which can help decrease LST (land surface temperature) in urban area. When air temperature decreases, the electricity consumption of household will also mitigate loading. Meanwhile, that lack of assessment of green vegetation coverage impact to LST and electricity consumption, so that it could not clearly quantify the environmental contribution of green coves. In Taipei city, for example, FVC (fractional vegetation cover) value and LST was collected from Aster satellite remote sensing images, and data of household electricity consumption was acquired from Taiwan Power Company. Based on these three factors, it analyzed relative model. In the urban area, fractional vegetation cover might influence with land surface temperature and electricity consumption. The result shows that when the value of fractional vegetation cover is low, the air temperature is high. While fractional vegetation cover is increase, not only the land surface temperature is decreasing but the electricity consumption is also reducing. This study hopes can be the reference materials for the future metropolis plan and to inhibit the spread of urban thermal environment.展开更多
The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urb...The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urban land-atmosphere coupling studies but is a common weakness in current urban canopy models. Using the surface energy balance data at a height of 140 m from a 325 m meteorological tower in Beijing, we conducted a 1-year continuous off-line simulation by using a coupled land surface model and a single-layer urban canopy model and found that this model has a relatively large systematic error for simulated latent heat flux. To improve the numerical method for modeling latent heat flux from urban surfaces, we combined observational analysis and urban land surface model to derive an oasis effect coefficient for urban green areas; to develop a temporal variation formula for water availability in urban impervious surfaces; and to specify a diurnal profile and the maximum values of anthropogenic latent heat release for four seasons. These results are directly incorporated into the urban land surface model to improve model performance. In addition, this method serves as a reference for studies in other urban areas.展开更多
文摘Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land cover and normalized difference vegetation index (NDVI) were discussed. The result of LST showed that the urban LST was evidently higher than the suburban one. The average urban LST was found to 4.5 ℃ and 9 ℃ higher than the suburban and outer suburban temperature, respectively, which demonstrated the prominent UHI effects in Beijing. Prominent negative correlation between LST and NDVI was found in the urban area, which suggested the low percent vegetation cover in the urban area was the main cause of the urban heat island.
基金Natural Science Foundation of China (40975037 40775033)
文摘The 2003-006 observations were utilized to analyze the surface characteristics of summer land-sea breezes along the coastland of Guangxi and the Weather Research and Forecast model was applied to simulate the breeze structure on August 1-2, 2006. Results show that 1) the intensity and distributions of the breezes reproduced from improved urban underlying surface were close to observations. In the daytime the coastwise urban band was a convergent belt of sea breeze, corresponding to the centers of torrential rains; in the nighttime hours the surface of the Gulf of Tonkin (the Vietnamese name) or the Northern Bay (the Chinese name) acted as a convergent zone of land breezes, likely to produce convective cloud cluster; 2) the experiment on urbanization showed the heat island effect enhancing (weakening) the sea (land) breeze development. Furthermore, the heat island effect mitigated the atmospheric cooling via radiation over the cities in the night, weakening sinking motion correspondingly, thereby suppressing the dominant factor responsible for the steady development of temperature inversion. As a result, the inversion vigor was reduced greatly, but nevertheless no strong effect of the decreased subsidence was found upon the inversion height.
文摘The cooling effects of urban green vegetation cover, which can help decrease LST (land surface temperature) in urban area. When air temperature decreases, the electricity consumption of household will also mitigate loading. Meanwhile, that lack of assessment of green vegetation coverage impact to LST and electricity consumption, so that it could not clearly quantify the environmental contribution of green coves. In Taipei city, for example, FVC (fractional vegetation cover) value and LST was collected from Aster satellite remote sensing images, and data of household electricity consumption was acquired from Taiwan Power Company. Based on these three factors, it analyzed relative model. In the urban area, fractional vegetation cover might influence with land surface temperature and electricity consumption. The result shows that when the value of fractional vegetation cover is low, the air temperature is high. While fractional vegetation cover is increase, not only the land surface temperature is decreasing but the electricity consumption is also reducing. This study hopes can be the reference materials for the future metropolis plan and to inhibit the spread of urban thermal environment.
基金supported by National Natural Science Foundation of China(Grant No.41175015)Ministry of Science and Technology of China(Grant Nos.2012BAC22B00 and GYHY200906026)
文摘The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urban land-atmosphere coupling studies but is a common weakness in current urban canopy models. Using the surface energy balance data at a height of 140 m from a 325 m meteorological tower in Beijing, we conducted a 1-year continuous off-line simulation by using a coupled land surface model and a single-layer urban canopy model and found that this model has a relatively large systematic error for simulated latent heat flux. To improve the numerical method for modeling latent heat flux from urban surfaces, we combined observational analysis and urban land surface model to derive an oasis effect coefficient for urban green areas; to develop a temporal variation formula for water availability in urban impervious surfaces; and to specify a diurnal profile and the maximum values of anthropogenic latent heat release for four seasons. These results are directly incorporated into the urban land surface model to improve model performance. In addition, this method serves as a reference for studies in other urban areas.